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ERRATA

. 44, eq. (1.55), for "4" read "~ §".

. 45, eq. (1.56), for "0.764" read "0.1685" (= 0.764/4).

. 47, 2nd par., 4th line, for "saturation" read "supersaturation".
. 47, 2nd par., 6th line, for "saturation" read "supersaturation".
- 83, eq. (2.59), for "(t; —t)" read "(t, —1)".

. 84, fig. 2.4, for "OC’B" read "®c,f2"'

. 85, 1st par., 1st line, for "equations (2.60)" read "equation (2.60)".

. 87, 2nd par., 3rd line, for "saturation model" read "supersaturation model".

. 95, 1st par., 1st line, for "a undisturbed" read "an undisturbed".

. 97, 3rd par., 2nd line, for "(3.14) and (3.18)" read "(3.14), (3.17) and (3.18)".
- 103, eq. (3.34), for "(t — ¥, )" read "(E ¢, )"

. 112, table 3.3, for "0.0144" read "0.0147" and for "0.00003" read "0.0003".

LR~ A~ L - -~ - . - B - B - B - B o B =]

. 112, 3rd par., 2nd line, for "o = 2485.938, § = 48.745 and v = 6825.112" read
"a = 48.75, § = 6825.7 and 7 = 5.144".

. 113, 2nd par., 8th line, for "convective mass" read "convective heat and mass".
. 119, 2nd par., 1st line, for "have applied" read "have been applied".

. 130, fig. 4.3, for "¢(X+dX, Z) := &(Z, Z)" read "¢(X+dX, Z) := ¢(X, Z)".

. 143, 2nd par., 2nd line, for "Mizushina" read "Mizushina et al.".

. 144, fig. 4.6, for "wg(X+dX, Z):= wg(Z, Z)" read ”wg(X+dX, Z) = w (X, Z)".

. 145, eq. (4.52), for "2LBm" read "— 2LBm". :
. 159, 1st par., 1st line, for "global" read "overall".

. 194, 3rd par., 2nd line, for "have to" read "have to be".

. 197, 3rd par., 11th line, for "Two" read "Three".

. 239, 1st par., 5th line, for "ca" read "c:" (twice).

. 246, 3rd par., 1st line, for "bulk" read "film".

. 259, 1st par., 1st line, for "does depart" read "does not depart".

. 261, 8th line, for "cross—sectional" read "cross—sectional area"

=T - B - A~ - - - - - . - B - B - B - B =)

. 262, 26th line, for "equation (5.46)" read "equation (4.56)".
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GENERAL INTRODUCTION

The present research was dictated by the need to develop a numerical model of plastic
ges—liquid corapact heat exchangers, as depicted in figure 1. These crossflow heat
exchangers have been developed at Akuo's research institute and are made emtirely from
polyvinglidene fluoride (PVDF) or polypropylene (PP). The heat exchangers conmsist of
plates containing small channels sand hence possess only primary, or direct, heat transfer

surfaces.

Liquid

%)

Figure 1 The plastic heat exchanger.

The use of plastic as material permits the heat exchangers to be used for heat recovery
from, sometimes corrosive, process gases. Condemsable components in the gas, such as
water—vapour, sulphur oxides and nitrogen oxides, may form condensate films along the
corrosion—resistant walls, The maximnm operational temperaiures of the PP and PVDF

heat exchangers —when properly cooled— are Limited to 100°C and 200°C respectively.
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As the costs of the heat exchangers are directly related to the heat exchanging
surface area, there is a need to determine the required heat transfer sutface as aceurately as
posgible. The rating of a heat exchanger is adapted to the apecific process requirements of
the cusiomer. As such dimensioning is preferably verformed on the customer’s premises,
the calculation should be executable on a personal computer (PC), Yet, the modelling
should be based on reliable expressions for heat and mass transfer, taking into account the
special features of plastic heat exchangers.

The gas and liquid flows entering the heat exchanger spread approximately equally
over the various channels of the heat exchanger. This allows the analysis to be limited to
the consideration of one plate. Both of the flows involved are laminar under standard
operating conditions, their Reynolds number being in the range 200 < Re < 2000. A glance
at figure 1 reveals that the transfer between the fluids is a three~dimensional process; the
physical properties vary in the direction of both fluids flows and alse across the channels.
However, employing the mesn mixed values (4.¢. the values that would result after mixing
of the flow across a channel) of temperatures and water—vapour mass iraction, the
modelling problem becomes two—dimensional. For the simplest case, heat transfer without
condensation on the gas side, this approach results in a set of differential equations whose
solution i well documented in the literatnre.

In the cagse of partial vapour condemsation the temperature of condensate—gas
interface is not known explicitly, and is furthermore mon—uniform. For pure vapour
condensation this temperature is known, being equal to the saturation temperature of the
vapour, but here the vapour mass flux to the condensate is unknown. In hoth cases
however, the unknown quantity follows from a ocal energy balance of heat fluxes to and
from the eondengate surface, A second complication when condensation cccurs is that the
heat and mass transfer on the gas side is enhanced by the tramsport of vapour
(corresponding, effectively, to “suction" through a porous boundary). In this thesis the

classical film model is adopted to account for this effect, since it provides local correction
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factors for the transfer vates and simple frst order differential equations for the decrement
in temperature, raass flow and presswre in 3 closed chamnel. In the past this
one—dimensional model, whick neglects convective and diffusive transport in the direction
of flow, has proven eatisfactory in many practical applications. In chapter 1 the model is
reviewed and extended to include the effect of mass transfer on pressure drop. Some of the
regulting pressure drop predictions are compared with results, both theoretical and
experimental, of previous investigators.

Exploratory computations of heat transfer from mixtures of non—condensables and
water—vapour reveal that the mived mean water—vapour fraction and temperature of the
gas mixture may correspond to supersaturation, so that fog is likely to be formed in the gas
flow. Fog formation alters heat and mass transfer rates from gas to wall and hence the
performance of the heat exchanger. Moreover, the occurrence and rate of fog formation is of
utmost importance. In processes aimed solely at heat recovery it is an undesired
phencmenon since the formed droplets represent a yield loss and are difficult to remove.
For gas washing applications however, both the droplets and condensate films are very well
suited to absorb toxic and/or corrosive gas components (implying that the heat exchanger
should be used in combination with a fog remaval device).

In chapter 2 therefore the film model is extended to include possible fog formation,
asgurning no supersaturation to be posgible, the so—called saturation condition. This
chapter yields new expressions and procedures, accounting for the combined effects of fog
formation and suction/injection, for the dimensioning of heat exchanging devices, such as
condensers and evapotators. In chapter 8, on the basis of an alternative approach, similar,
but far simpler results are achieved. In both chapters the suggested film model approach
for fog formation is compared with theoretical and practical results of previous
investigators.

In chapter ¢ the fog film model is applied to actusl water—vapour air mixtures and
water flowing through the plastic heat exchanger, and assessed against performed
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meagurements. Both the fog film models of chapter 2 and 3 are applied and their results
compated mutually, and with predictions of the conventional film model of chapter 1. A
special feature of water-vaponr condensation on plastic channel plates is employed in the
condensation model, namely a negligible temperature vatiation acruss the condensate film.
This feature of the process reduces the complexity of the physical model substantially since
condensate production and flow are decoupled from transfer processes on the gas side. It
also implies that the models are invariant with respect to the orientation of the heat
exchanger to the vertical.

For pure vapours other than water however, the simplification of an isothermal film
does not apply. This complication is considered in chapter 5, where the condensation of
pure vapour and its interaction with condensate, chanmel plates, and orientation to the
vertical is analyzed in detail. One of the results of this study, which is in fact an extension
of isothermal "Nusselt" plate condensation to non—isothermal plates, is the recognition of
two governing non—dimensional numbers. The theoretical predictions are compared with

performed experiments for a broad range of values of both non—dimensional nurmbers.
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1. THE CLASSICAL FILM MODEL

£1.1 Introdnction

For large mass transfer rates heat and diffusional mass transfer, a5 well as exerted ftiction,
from s fluid to & wall are influenced by the exira flow due to the mass transfer
(corresponding, effectively, to suction or injection). In the past corrections for this
influence have been derived from three approximate theories or models: the boundary layer
model, the penetration model, and the film model. Reviews of these models are found in
Bizd ef ol (1960) and Sherwood et el (1975). The film model is physically the most simple
description of the effect of the additional induced velodity, traditionally referred to as
"eonvective velocity", "bulk velocity” or "Stefan flow". The model idealizes the transition
between the flnid properties and those at the wall as occurring entizely within a thin flm
zmext {o the wall. In this film, the influence of convection parallel to the wall i3 furthermore
neglecied.

Though the correction factors supplied by the film model are bassd on a simple
Pphysical model, they are widely used in engineering applications, £.¢. by Perry and Green
(1884) or V.D.1. (1988). This is due to the fact that the physical acenracy of the correction
factors is pgenerally sufficiently high for engineering end purposes, and they ave easily
applicable.

Stefan (1873) was the fist to study, experimentally and theoretically, the
diffusional mass transfer in a stagnant film, including the induced velocity. Ackermann
(1937) examined the effect of this induced velocity on both heat and mass transfer in a
film. Colburn and Drew (1937) independently did the same, and applied the film model to
the case of closed channel flow. Mickley ef al. (1054) derived the three now well<known

film model correction factors for mass, heat and momentum transfer, which can be applied
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to any process of importance. Additionally, they compared the predictions of the flm
model with those of the boundary layer model, performed experiments, and found
satisfying agreement. However, they did not comsider the flow of a mixture through a
confined space, snch as a channel.

As a complete review of the film modal —to the anthor's knowledge— is absent, and
in thig thesis the model will be employed and extended to include the effect of fog
formaiion, the model is discussed in this chapter in some detail. The three film model
correction factors are derived for a binary mixture, consisting of a vapour and inert gases.
Subsaquently, the correction factors are applied to the flow through a channel, resulting in
expresgions for the temperature and vapour masg fraction drop. Furthermore, on the basis
of the film model correction factor for friction and an incremental momentum balance, a
compact equation is derived predicting the pregsure drop in a channel in the presence of the
induced velocity. This equation, which is derived here in this form for the first time, will
extensively be compared with results of several previous investigators, The formation of fog
in a film and in a flowing mixture is visualized in a plot, depicting the relation between
temperature and vapour mass fraction in the film and path of the mean mixed values with
respect to the saturation line. A typical feature of the flm model with respect to the
larninar flow regime, namely identical thermal and diffusional film thicknesses, is discussed
in the last but one paragraph.

As said, in this chapter the film model of a binary mixture is studied. In the past
the results of this model have also fruitfully been used to describe the transfer in
multicomponent mixtures. The diffusion of each component is then analyzed
independently, thus considered as "non=interactive", from all other components. However,
Cussler (1976), Webb et ol (1981) and Webb and Sardesal (1981) examined for which
exceptional circumstances diffusional interactions among the diffusing components become
relevant. For these rare cases a more complicated "interactive" model as derived by

Krishna and Standart (1976) is needed. The film model expressions based on the analysis of
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a birary mixture are then no longer aceurate enough.

§1.2 The film equations and their solutions

In thiz section the equations deseribing heat, mags and momentmm transfer in a film of a
binary mixture, wherein there is an induced velocity cansed by diffusion, are derived and
solved analytically. The solutions are employed in the next section to define the filt model

correction factora.
Mass transfer
Consider 2 film containing non—condensable gases and a vapour, a5 dépicted in figure 1.1,

throngh which there i2 & transfer of heat, mass and momentum in the y—direction, with
flow paralle] to the wall in the x—direction.

C
wall b

8 bulk

Figure 1.1 The film,

At the "wall" (y=0), e.g. denoting the surface of 2 lignid film, the vapour mass fraction is

¢ and the temperature t.. At 2 distance &, the bulk vapour mass fraction, €, 18 attained,
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at a distance 61. the bulk temperature, by, and at a digtance § the bulk velocity relative to
the wall, L For the purposes of the present analysis the physical properties in the film are
assumed to be comstant and the mixture to behzve as an ideal, incompressible, and
Newtonian gas.

The full Fickian diffusion equation, eg see Merk (1957), without source terms

reads:

1, 5
p(ﬂ+u@+v.‘?ﬁ);pm(_@_°+ﬂ) , (1.1
ar B 8y ox? Gy?

Attention is restricted here to steady situations, for which therefore the first term, 8¢/ Y,
is identically zero. In many cases the variation of ¢ (and t and u) is small enough for the
\erms involving & /8% to be neglected as well; in this way the "film model" is obtained, for

which equation (1.1) reduces to:

a

1.2
e (12

de
.Way—ﬂm

In equation {1.2) the convective velocity v is cansed by diffusion of vapour through the

mixture, and is derived in appendix A as:

gm__ D de (1.3)
1~ cdy

When this velocity is substituted into equation (1.2), an ordinary differential equation of ¢

in v is obtained. The boundaty conditions on ¢ read:

dy=0=¢ |, (1.4)
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and:
dy=§)=cp . (1.8)

Combining and solving equations (1.2) and (1.3), and applying boundary eonditions (1.4)

and (1.8}, ylelds the distzribution of the vapour fraction in the film as a function of y:

y 1~ ¢
[ 1—']
y)=1-(1- ci) e ; (1.6)

Heat transfer
In order to investigate the effect of the induced velocity on heat transfer, attention is now

focussed on the energy equation of the film. Again neglecting variations of ¢ in the

x—direction, for the film this equation is derived in apperdix A as:

2
pvva—ﬁ % , .7

with as boundary conditions on i:
Hy=0)=t , (18)
Hy=4)=14, . (1.9)

Substitution of equations (1.3) and (1.6) into equation (1.7), sclution of the resulting
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equation, and application of boundary conditions (1.8) and (1.9) now produces as

temperature profile in the film:

v 1 — oy
rechLn[l - ci] 1
1y) = (1, —t;) | e “b_ +t (1.10)
= Ln[-I-"—_ c.]
s Ve Yy

where Lev denotes the modified Lewis number.

Momentim (ransfer

To examine the infiuence of the induced velocity on the wall shear stress, the momentum
equation for the x—direction iy investigated. Again neglecting gradients of properiies in the

x—direction, as well as volume forces, this equation reads:

du d%u (1.11)

with appropriate boundary conditions on u at the wall and bulk:
u(y = U) =0 , (1.12)
uy = ﬁu) =ny {1.13)

Substituting equations (1.3) and (1.6) in equation (1.11), solving the resulting equation and

apphying boundary conditions (1.12) and (1.13) results in:
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b 1 - o8
SG—SELH[‘i__ cl]
uy) =, |3 . (1.14)
3ol
Sei, T ¢ 1
R _

In this equation the Schmidt number S¢ has been introduced.
In this paragraph the vapour concentration, temperature and velocity profiles in the
film have heen derived, represented by equations (1.8), (1.10) and (1.14), respectively. On

the basis of these solutions correction fastors are arrived at in the next section.
§1.3 Correction factors for the effect of the induced velocity

In this section the classical film model correction factors are introduced by comparing the

trangfer rates in the binary film with and without induced velocity.
Mass transfer

The mass transfer from the fluid to the wall is governed by Fick's law:

; 5_pv(y=0)='1—;.ch§|y=0 . (1.15)

Without taling account of the induced velocity, the mass transfer is simply described by:

-,

e 1
m—gm-lTE-{ ’ (1.16)

because without induced velocity the profile of ¢ (and t and u) as a function of y is a
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straight line (the Limiting cases of equation (1.6), (1.10) and (1.14) for small ¢). Equation
{1.16) indicates that the maass ﬂu:l: is small for ¢, << 1 and ¢ << 1, that is to say, dilute
vapour mixtuzes. Equation (1.16) provides the referemce level, which must now be
corrected for the effect of an appreciable induced velocity. In equation (1.16) the transfer

coefficient of mass i given by:
B
Em = %; : (1.17)

To derive the diffusional transport of mass from the mixture to the wall, equations (1.15)

and (1.17) are applied to equation (1.6):

1—-c
=g Ln[—i—~_ ‘c‘i’] . (1.18)
This logarithmic expression for the diffusional mass flux is the original result of Stefan
(1873). The film model correction factor is now introduced by comparing the expression for
the tramsfer rate with induced velocity with that without. That is to say, on a comparison

of equation (1.18) with equation (1.16), the classical film model correction factor is derived;

— ¢c
@C =:_~'-$'g_—l , (1.19)

by = 2 (1.20)

where 1t follows from equation (1.18).
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Heat transfer

The heat transfer from the fluid to the wall is deseribed by Fourier’s law ag:

—1 dt

y=0
For a negligible induced velocity the transferred heat through the film i3 gimply given by:
4=1hg(t,=%) , (1.22)

which serves as reference level for the effect of the indueed velocity on heat transfer. The

heat transfer coefficient in equation (1.22) is defined as:

by = %; X (1.23)

The keat transfer from fluid to wall is obtained by combining equations (1.10), {1.18),
(1.21) and (1.28):

q9=h, (4, —t) e (1.24)

On a comparison of egquation (1.24) with equation (1.22) the following film model

correction factor is derived:
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_¢t

Oy = ?ﬁ“""—l ) (1.28)
e -

with as thermal dimensionless mass flux in equation (1.28):

¢‘2 =TM . ‘ (1.26)

The thermal correction factor (1.25) is commonly referred to as Ackermann correction

factor,

Momentum tranafer

The cxerted shear stress by the finid on the wall is poverned by Newton’s law as:

T o= ?7%1—; y=0 . (1'27)

Without mass transfer the shear stress is deseribed by:
T=-§pfu§ \ (1.28)
with as fiction coefficient defined:

[=_ 20 (1.29)
pub5

u

This friction factor is usually called Fanning friction factor. The interfacial shear stress
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exerted by the fluid on the wall is detexmined with equations (1.14), (1.18), (1.27) and
(1.29):

il
-
r=4pfuf (1.30)

- oy

é -1

On a comparison of equation (1.30) with equation (1.28) the film model eorrection factor

for momentum transfer is obtained:

-4
_ u
e, = -5 (1.31)
e =1
with as frictional dimensionless mase flux in equation (1.31):
_ 2m
b= play - (1.2)

The correction factor (1.31) for interfacial shear stress was first derived by Mickley ef ol
(1954).

For condensation problems, ¢, >'¢; and thus m > 0, the correction factors (1.19), (1.25)
and (1.31) are larger than unity. On the other hand, for wall evaporation, ¢ < ¢; and <
0, the correction factors are smaller than unity. For small mass transfer rates, m = ¢ or (cb

¢,)/(1 ~c;) = 0, the correction factors tend asymptotically to unity. Or in other words, the
induced velocity plays no role of importance and consequently, uncorrected heat transfer,

mags transfer and friction predictions will suffice.
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The diffusional mass flux m in equations (1.20), (1.26) and (1.32) is taken from
equation (1.18). For injection or suction problems with an imposed mass flux, this mass
flux can be substituted in these equations to determine the three film model correction
factors. Thus, identical correction factors follow from the film model eguations with a
comstant imposed mass flux in the film whick, like the diffusionally induced mass flux, is
independent of y; this can be verified by considering equation (A .4).

Miznshina et al (1978) ameng others, successfully employed the thermal correction
factor in describing the heat transfer of a pure superheated vapour in the presence of &
condensation mass flux. Surface injection and suction in tubes with porous walls have been
the subject of numerous experiments and caleulations. In the recent article of Wang and Tu
(1988) results of these efforts have heen found in good agreement with the film model
correction factors for friction and mass transfer. Summarizing, though the film model
correction factors are here derived on the basis of a diffugional mass flux, they can be
derived from and applied to imposed suction and injection as well. For this reason in what
follows the terms "suction™ and "injection" will be used to indicate situations involving
respectively mass tramsfer to and from a wall, even if this mass transfer is due fo

condensation or evaporation.
§1.4 Application of the film model to channel flow

In the previous section correction factors have bheen introduced to account for the sffect of
the induced velocity on mass and heat iransfer and on ghear stress, In this section the
practical use and application of these factors in incompressible convective channel flow is
demonstrated. The approach is based on the global conservation laws of mass, energy and

momentum and is applicable o any cross—gectional channel shape and geomeiry.
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Mass balance

The gas mixture flows through the channel in the x—direction, Between the mixture and
the wall of the chanmel there exists & transfer of mass, heat ard momentum. The mean
mixed values of vapour mass fraction and temperature in a cross—section (4.e the values

that would result after mixing of a cross—section), are denoted by T and 7, respectively.

& & o
-7 t+dg
¥ dl
F Pidp
I Apdgr
X dx
m 4

Figure 1,2 The channel.

A differential mass balance for an element dx, as shown schematically in figure 1.2, yields:

dfpu) 4 . 4 ¢ - 4
dx Dy D m T T = G (193)

In this eguation the hydraulic diameter D11 18 defined ag four times the cross—sectional area
divided by the perimeter of the channel and W is the mixture’s mean velocity. The mass

transfer coefficient is given by equation (1.17), in which is substituted:
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Dy,
. = o {1.34)
where Sh represents the local convective flow Sherwood number for low mass transfer rates,
pertaining to the considered channel geometry. The implicit asgumption is thus made that
ﬁc ia not itself a significant function of the mass transfer rates. Moreover, as first order
approximation in the film model correction factors ¢ (and u,) is replaced by ¢ fand 1),
and the film thickness 6(: is approximated by equation (1.34).
For a binacy mixtute, the change in mass flow through the channel is related to the

vapour mass fraction by:

(p)(x) (1 —(x)) = (pu)(x=0) (1 —c(x=0)) . (1.35)

Equation (1.33) then yields:

4t - g, E-mc:i (1 -¢)?
B E 1.36
dx Dy (ou) (x=0) el =81 - gx=0)) (1.28)

Equation (1.35) prescribes mathematically the mass conservation of the ipert components
entering and flowing through the channel. Equation (1.36), with application of equations
(1.18)—{1.20), i3 rewxitien as:

dc 48 Ln[l - E} (1-¢)*

dx Dy () (x=0) 1-g

(L - ax=0)) 0-47)
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Energy balance

The change of the mean mixed bulk temperature T of the mixture flowing through the

channel is obtained by employing an incremental energy balance, see figure 1.2:

at

D
— —h —m T . = == T — N
dxpu(x) . & m (T~ 1) G v q ]1g 0, (F—t) . (1.38)

Equation (1.38) is, with equations (1.26) and (1.35), rewritten for a binary mixture as:

v —dh (1 -%)
— 8 -— T — f) —
(B =4) (E=1) (1 - Tx=0))

- (1.59)
dx cPDh(pu)(x=0)
In equations (1.26), (1.38) and (1.39) }.1g is defined by equation (1.23) with as film

thickness apphied:
f=2 (1.40)

where Nu is the local convective flow Nusselt number at low mass transfer rates belonging
to the studied channel shape. With equation (1.25) it can be verified that @t(¢t) - d)t ig
identical with @t(-q;t). This implijes that these identical functions are smaller than unity
for suction and larger than unity for injection; G)t(d)t) and its reflection in the vertical axis
@t(_¢t) are depicted in figure 1.3. Suction thus enhances the heat transfer at the wall,
while the temperature drop of the mixture nevertheless becomes smaller as mass is
ahsorbed at the wall. This opposite conduetion of heat flux and temperature alteration has

already been noticed and discussed by Colburn and Drew (1937) when applying the film
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model to heat and mass transfer in channel flow. Subsequent workers applied the film
wodel to combined heat and diffusional mass transfer in condensers and evaporators and
found in good agreement with practice, e.g. see the results of Webb and Sardesai (1981) or

the procedures recommended by V.D.L (1088).
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Figure 1.3 Ackermann correction function and its reflection in the vertical axis.

Momentum balance

An expression for the pressure drop in a channel follows from a differential momentum

balance on the material between the planes x and x+dx, see figure 1.2:
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o _2
dp , d{pu} =....q-mé-=—®u-§pu 4 (141)
dx dx Dy Dy

The second term on the left hand side represents the vapour deceleration or acceleration
owing to suction or injeciion, respectively. In equations (1.41) the coefficient f is the local
coefficient at low mass transfer rates pertaining to the comsidered channel shape.

Substituting equations (1.32) and (1.33) and rearranging equation (1.41) yields:

& _ 2o 2L 4 (142)
dx o, * F#'

In deriving equation (1.42) the variation of the mixture’s density and momenivm flux
coefficient {which is the ratio of mean gquare and square mean velocity) in the direction of
x have been considered as zero: within the accuracy of the presemt model this distinction is
minor.

Result (1.42), the film model expression for the pressure drop, has —to the author’s
knowledge— never been obtained before. It is therefore compared extensively in the
following with results of experimentsi and theoretical studies of fow through closed
channels with porous walls in the presence of imposed suetion and injection. Im the past
congiderable effort has been expended to this flow since it has been applied fo transpiration
¢ooling and boundary layer control, and is also found in membranes for production of
uranium—235, artificial kidney dialysis and culturing of animal cells. In all studied papers it
has been assumed that the laminar or turbulent porous channel flow is selfsimilar. The
self—-gimilarity is defined as a state of fow in which a local velocity distzibution divided by
the cross—sectional avetage velocity does not wvary in the flow direction (4.e invariant
momentum flux coefficient), and it offers the advantage of simplifying the equations of

continpity and motion considerably.
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Fully developed laminar fluid flow between parallel plates and in circular tubes with
surface injection and suction has heen studied analytically by many investigators. For both
cases the governing continuity and Navier—Stokes equations were reduced to a single,
fourth order, non—linear ordinary differential equation. This equation was initially solved

using perturbation methods and subsequently using numetical integration.

25 i i [ ] [ | [ ]
4P
3= Ph
2pfu(z)?
20 =
15
10 =
5
0
4 -z
eq. (1.42), u¥fu =6/5
."’ —_— = eg. (L43), E,’Ezal
_6 - e
/. gy, (1,43)
/ ———— g (144
10 T T L] L] T
-3 0 3 6 9 12 15 18

Figure 1.4 Pressure drop of laminar flow between parallel plates in the presence of

suction and injection.
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A listing of all relevant papers on flow between paratlel plates can be found in the notes by
Terrill (1964, 1965), particular reference being made here to the cortributions of Berman
(1953}, Yuan (1956) and Berman (1956). The second order approximation for th,l < 1/3

of the differential pressure variation reads:

2 z 1
__H_M(l_%.s%.q.sﬁg%ﬁc}ﬁ) , (1.43)
dx D]l
and the asymptotic approximation for [¢, | > 1/3:

®- ﬂﬂ(”“g o) (b, <—13)

(1.44)

_ agf(x)? 3, 12 .
- o, [3¢ ][1+<3¢:~ 1)2+(3¢33-51)3]

(8, > 1/3).

In figure 1.4 the dimensionless pressure gradient is depicted, according to equations
(1.42)1.44}, as a function of the dimengionless suction rate ¢,- In equation (1.42) the
momentum flux coefficient 6/5 is substituted, derived from undisturbed Poisenille flow, 4.e.
¢u = 0, between parallel plates, see table 1.1.

Figure 1.4 shows the trend that the film model underpredicts the effect of large
injection rates and overpredicts the effect of large suction rates on the pressure drop. This
car be understood from the fact that the velocity profile in the center of the chanmel
steepens slightly and flattens substantially ("plug flow") for large injection and suction,
respectively. Hence for large suction rates the momentum flux coefficient will tend to

unity, while for injection the momentum flux coefficient will even be larger than the values
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listed in table 1.1, To illustrate the pertinent influence of the momentum flux coefficient on
the pressure drop predictions, equation (1.42) is also drawn in figures 1.4 with a

momentum flux coefficient of unity substituted.

laminar flow turbuolent flow
parallel plates circular tube parallel plates circular tube
— .2
u?fu 6/5 443 (1+n)?/(2+n)n (14n)3(3+2n)*/2n*(2+n)(2+2n)
£ 24/Re 16/Re 0.078/Re** 0.079/Ret 2

Table 1.1 Neutral (¢, = 0) friction coefficients and momentum flux cosfficients (x

denotes the turbulent power—law exponent).

For injection the prediction is worse, as expected, while for large suction rates the
determined pressure drop is indeed in better agreement with the referred results.
Perturbation solutions of the govetning equations of laminar flow through porcus
circular tubes for large and small |¢u| have been derived by Yuan and Finkelstein (1956)
and Terrill and Thomas (1969). Some of these theoretical predictions have been confirmed
experimentally by Bundy and Weissberg (1870). For [¢ | < 1/4 as first order

approximation for the pressure drop was obtained:

£=_2ﬂ(ﬁﬁ(1_3¢) , (1.45)
dx Dh u

and as approximation for |, | > 1/4

AP _ _2A00(x)7 (1 a053 24674 ¢) (b, < -1/4)
dx Dy,



eq. (1.42), W7 = 473

0. (142), /7 w1

N -// —_— — &g (149)
b gq), (1.46)
-0 T Y ¥ T ¥ T
3 3 % 9 12 15 18
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(1.48)

Figure 1.5 Pressure drop of laminar flow in a circnlar tube in the presence of suction

and injection.
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In figure 1.5 equations (1.45), (1.46) and (1.42), with as momentum fux eoefficients 1 and
4/3 substituted, are drawn. This latter value is baged on the parabolic velocity profile af
Hagen—Poiseuille fow in a tube, in the absence of suction and injection, see table 1.1.
Figure 1.5 indicates that the film model with a momentum. flux coefficient of 4/3
substituted is in reasomable agreement with the asymptotic results for small M)u |. In
contrast 10 flow between parallel plates, the referred authors found that the profiles flatten
both for injection and suction. Pigure 1.5 confirms that the effect of a flatter profile iz more
prenounced for suetion (likewise laminar flow between parallel plates); equation (1.42) with
momentum flux coefficient unity substituted is indeed in better agreement.

Pressure drop of turbulent flow through circular tubes, in the presence of surface
injection and suction, has been the subject of nymerous experimental and theoretical works
in the past. In figure 1.6 the line based on the injection experiments of Olson and Eckert
(1966) is depicted. The Reynolds number Re ranged from 28,000 up to $2,000. One of their
findings was that the velodity field in the tube becomes fully developed within 12 tube
diameters. The concept of selfsimilarity of the velocity field formed the basis of
eomprehensive suction computations performed by Kinney and $parrow (1970). In figure
1.6 their result for Re = 50,000.is drawn. Migushina ef @l (1975) derived an empirical
relation for the pressure drep as a function of the suction rate. This relation is based on
both suction and injection experiments, Re ranging from 9,000 to 102,500. The suction rate
—v(y=0)/1 range of their experiments was confined from —0.017 to 0.018, see figure 1.6.

In this figure also equation (1.42) has been drawn with 4f set equal to 0.023 and a
momentum flux coefficient of 1 and 1.02. The value of { is obtained from the intersection of
all lines, depicted in figure 1.8, with the vertical axis, correspoading, to the neutral cage of
neither suetion nor injection. This friction coefficient of turbulent fiow through a circwlar
tube corresponds, according to Blasius® equation, see table 1.1, with a Reynolds number of
about 36,000, which is indeed within the range investigated by the various authors, The

momentum flux coefficient listed in table 1.1 follows from the developed turbulent flow
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power—law velocity profile in the tube, see Ward—Smith (1980). With power—law exponent
n = 7 substiteted, this value of n pertains to the afore—said Reynolds number, the

mentionéd momentum flux coefficient 1.02 is obtained.

Q.25
— o4P n
eq. (L42), vifi = LO2 Jdx b
p— — -’
— T = eq (143}, uz/iz=1 A(x)? /‘/
——===———==— Mizushina et al {1975)
——=—-w-— Kinney and Sparrow (1970)
st e (g d Echert
on an ort (1966) —o(y=0)/T
Q
- = —0.25
- e —0.50
—0.75
.04 -0.02 Q .02

Figure 1.6 Pressitte drop of urbulent flow through a cirenlar pipe in the presence of

snetion and injection.

Figure 1.8 indicates the good agreement between the original 2nd compact equation (1.42),

and all results of afore—mentioned investigators, in particular when the momentum flux
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coefficient of 102 iz applied. The agreement remains within 10 per ceni for the largest
suction rate, and within 8 per cent for the largest injection rate. These large values of
[v(y=0)/] are typical of tubes with porous walls; diffusional "injection" or "suction”
rated in evaporators or condensers are usually smaller,

In figures 14-1.6 the enhancement of the pressure drop is illustrated as the
injection rate rises, due o the amount of added gas to be accelerated. One can also see the
sign change of the pressure drop for sufficiently large guction rates, caused by the
momentum decrease of flowing fluid. From equations (1.42) and (1.31) the
pon—dimensional mass flux pertaining to the zero pressure drop situation is derived

analytically as:

— =
j__/.u_} (1.47)
1

¢u = Ln{

-
m?fu -

The strength of equations (1.42) and (1.47) lies in the fact they are not limited to one
channel shape or one Reynolds number. To apply these simple and compact eguations one
only needs to know, for & given channel shape, the uncorrected friction factor as a function
of the Reynolds number, and the ratio of mean aquare and square mean velocity. This ratio
is in general close to wnity for turbulent flow, but a better prediction is obtained when the
momentum fux coefficient is sctually assessed and applied. For laminar flow the
momentum flux coefficient is evidently unequal to unity, but can readily be obtained from

u consideration of the neutral velocity profile in the channel.
§1.5 Retation between ¢ and t in the fitm and the path of candt

In previous sections film model correction factors have been derived and applied to the case
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of closed channel flow. In this section the relation of vapour mass fraction and temperature
in the film with respect to the saturation line is discussed, in particular the possible
crogsing of this line. Furthermore, attention is focussed on the path of the mesn mixed
values ¥ and ¢ of a binary mixiure flowing through a channel, and the entering of these

properiies into the supersaturated region. Special attention is paid to a binary mixture for

which:
Nu=38h , (1.48)
(41
e Mo, (1.49)
§ Sh

see equationg (1.34) and (1.40), corresponding o equal iemperature and diffusion film
thicknesses. Both equalities apply to any heat and mass transfer problem, either convective
oI non—convective, either laminar or turbulent, for a Lewis number Le equal to unity, They
also apply to lamirar flow with 3 Lewis number unequal to unity, a8 will be discussed in
the next section.

To express the vaponr mass fraction as a function of the temperature in the film,

the evordinaie y/ §. 18 eliminated from equations (1.6) and (1.10), resulting in:

eV 1

¢ 1 — ¢
t—t| T ECLW'[I — c-] Lev
ch(t)=1+(ci—1)[ il 1 +1] (1.50)
ty = t;
b~
(4 <t4ty)
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Equation (1.50) relates ¢ and & in the fiim. Both for condensation. (that ia to say Cp > )
and for evaporation (¢, < &), G(t) proves to be 2 monotonically increasing funetion of .
This property follows from the first derivative of G(1) with respect to & Differentiating
G(t) twice with respect 0t makes it further clear that G(t) is convex for Le, < 1 with
condensation or evaporation, while G(t) iz concave for LEV ~ 1 with condensation of

evaporation. For Le_ =1, G{t) is a straight line, both for evaporation and condensation.

F(t)

Yapour

iz

fraction nl-lpurﬂn.m:a.led
Gft) Le, =1
Git), Leg < 1
Gith Lev 51

Gi4), Le, < I

auperheated

(ty <p)

Temperatute

Figure 1.7 Behaviour of G{t), 4, = O,

In figure 1.7 the possible shapes of G(t) for equal film thicknesses (corresponding to
equality {L.49)) are depicted. In fact y actd as & parameter of each curve depicted in this
figure. In the figure the saturation line ?(t) of the mixture concerned is also drawn.

Tt can be seen that a part of the film is supessaturated, even when (tb, cb) it
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situated in the superheated region. The part of the film that is positioned in the
supersaturated region, is thermodlynamicaﬂy in a unstable state. As a resnlt condensation
takes place and fog is created: by homogeneous nncleation and heterogeneous condensation
on foreign particles, see Steinmeyer (1972). Where fog is formed, the basic diffusion and
energy equations are locally altered. In appendix A the governing equations of the fogging
part of the film are derived.

In arder to study the behaviour of the bulk, or mean mixed temperature, T and
vapour concentratios, ¢, of a binary mixture flowing through a chanmel, the coordinate x is
eliminated from equations (1.37) and (1.39). Substituting equations {1.17), (1.18), (1.23),
{1.28), (1.26), (1.34) and (1.40), assuming uniform interface conditions, separating of the

variables ¥ and ¢, and integrating yields:

=G =1+ (1.51)
Sh ah 1 — g(x=0) LevNu
T -t Nule LFVNEL”[W] K
O (A el o)
f(x:[]) —ti

where the values of ¢ and © at an arbitranily chosen location, x = 0 (for instance the
entrance of a channel), have been applied to determine the integration constant.

One can readily see that to Le = 1, in view of equality (1.48), applies:
GE) = G (1.52)

This result is very interesting because for Le = 1 the binary mixture’s mean mixed
temperature and vapour mass fraction (I, €) evidently "walk", while the mixture flows
through the channel, along G(t) towards (ti, ¢,), 8e¢ figure 1.7. In other words, the curve
G(t) then acts as streamline for (%, ©), independent of Lev, although this curve is originally
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derived from the temperature and vapour conceniration relationship in the film. For Le
unequal to unity, however, it can be seen that the mixture follows G(E), but not G(t).

Fignre 1.7 also indicates that under certain circumstances the mean mizxed
properties may enter the supersaturated area, which will result in a supersaturated mixture
when the flow through the chansel in a eross—section is mixed. Colburn and Drew (1937)
already remarked that a mixture's bulk temperature and vapour fraction in a condenser
may cross the saturation line and enter the supersatvrated region. On the other hand, if the
curvature of G(t) is sharp enough (Le < 1), it is possible that the c—t relation in the film,
a5 well as the path of the mean mixed valyes, remains in the superheated region, even if the
mixture enters the channel saturated. It is interesting to notice that the bulk can be
superheated or saturated, while G{t) is situated in the supersaturated region. Tt also
possible that the bulk properties move to enter the supersaturated region, while G(t) is
located in the superheated region. Hence it is important to distingush two kinds of
supersaturation and fog formation, namely:

— fog formation in the film,

w fog formation in the bulk, owing to the entering of the bulk properties into the

supersaturated region.

In the former discussions Le and Le_ have been treated as independent variables, However,
it should be realized that Le and Le  are coupled by equation (A.13), and therefore becoms
identical when the vapour mass fraction tends to unity. Consequently, for large vapour

fractions Le,, unegual to unity implies Le unequal to unity as well.
£1.6 Laminar flow
Two specific features of the film model for Le = 1 have been mentioned, namely equal

temperature and diffusion film thicknesses and the path of change in the mixture’s mean

mixed properties lying along G(t), see equation (1.52). In some sitnations, however, Nu =



8h can still apply, even when Le is not equal to unity. Examples are heat and mass transfer
in the absence of (free or forced) convection, or fully developed laminar channel flow. In
common heai txansfer devices this type of flow is rarely found, which may be the reason
that this special case has not been examined in detail yet. Tt will now be demonstrated that
for laminar flow situations No = Sh is an acceptable approximation, even for Lewis
numbers unegual to unity and in the presence of entry effects.

As example the laminar flow of an air water—vapour mixture between parallel plates
i congidered more closely. The mean Nusselt number for forced convective laminar flow

through this channel configuration is given by Stephan (1959) as:

0.024 (RePrDy [B)'t4

Nu = 7.56 +
1 + 00358 (RePrDy /B) ¢ % prttt

{1.53)

in which the hydraviie diameter Dy, equals twice the the gap height of the duct, and the
Reynolds number Re is based on this hydraulic diameter. The channel length is represented
by B. By replacement in equation (1.53) of Nu by 5H and the Prandt] number Pr by the

Schmidt number S¢, the following relatior for the mean Sherwood number is obtained:

0.024 (RePrD, /B)!14 Lel'!

SR = 7.55 +
1 + 0.0358 (RePrDy /B) -8 pr0 17 Letét

(1.54)

In equations (1.53) and (1.54) the first (constant) term on the right hand side represents
the fully developed laminar flow Nusselt/Sherwood number, while the second term
accounts for the enhanced transfer due to hydraulic and thermal /diffusional entry effects.
For air and water—vaponr the Prandt] number is 0.7 and the Schmidt number about
0.55. As entry effects cannot be neglected, and Le is not equal to nnity, SR will not exactly

be equal to Nu. However, when (typical of situations to be considered later) the above
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valugs of Pr and Sc, a large Re of 2000, and a unfavourable Dy /B ratio of 1/19, are
substituted in equations (1.53) and (L.54), one finds SE = 9.26 snd Nu = 966, This small
difference between both numbers makes equality (1.48) an accepiable approximation, in
particular when the physical accuracy of equations like (1.58) and (1.54) as such ia
considered: Hwang and Fan (1964) showed the accuracy of equation (1.53) is typically of
few per cent.

Thus, even for Le unequal to unity, with modest entry effects, equality (1.48) is
acceptable for flow through parallel plates, and also for many other channel configurations,
of course. This can bg verified by considering forced comvective laminar flow Nusgselt
number correlations for diverse channel shapes, which have been documented by Shah and
London {1978), The only requirement, in fact, is that B/Dh is lazge enough, and Le is close
enough to unity.

For turbulemt flow, cn the other hand, the approximation Nu = Oh i less
acceptable. For this flow situation Nu and Sh are often correlated by the Chilton—Colburmn

analogy:

Nu _ Leé . (1.55)

Sk

A substitution of Le = 0 55/0.7 in equation (1.55) indicates that this quotient differs more
than & per cent from umity, which is twice the maximum error invelved in approximation
{1.48) in the laminar case.

The Nusselt and Sherwood number correlations for forced convective laminar flow
between parallel plates have already been presented. For completeness, the friction
coefficient is mentioned in the following as well. The mean friction coefficient for laminar

Duid flow between pasrallel plates has been determined by Lin (1974):
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D
=24 ge1a b | (1.56)
Re B

valid for B/DhRe larger than 0.01, The fizat term on the right hand side of equation (1.58)
represents the fully developed laminar flow friction factor, the second term accounts for the

increment in the friction factor by entry effects.
$1.7 Concluding remarks

As the film model plays an important role in the practical description of heat and mass
trangfer processes, this model has been discussed in some detail in this chapter. First, the
three classical film model cotrection factors for energy, mass and momentum transfer have
been derived for a diffusion induced velocity in a binary mixture. They can however be
generalized to situations invelving suction and injection. Moreover, in the past the results
have successfully been applied to multicomponent diffusion problems as well.

Subsequently, the film model correction factors have been applied to closed channel
flow and universal expressions derived for the mean mixed vapour mass fraction,
temperature, and préssure variation along the channel. The latter appears to be a new
equation, and has been found in good fynctional accord with various non—diffusional
suction and injection results of previons workers. The momentum flux coefficient (ratio of
mean square velocity and square mean velocity) in a chanme] proved to be an important
parameter in predicting the laminar flow pressure variation in the presence of suction and
injection. As the turbulent flow velocity profile approximates plug flow, this coefficient is -
there close to wnity.

The local vapour mass fraction in the flm has been expressed as a function G(t) of
the local temperature. The relation between G(t) and the onset of fog formation in the flm

hag been discussed. In following chaptets G(t) will frnitfully be employed to investigaie the



46

possible fog formation in a film and a flowing mixture. Furthermore, it has been
demonsirated the mesn mixed vapour fraction ¢ and temperature t of a binary mixture
follow the relation G(t) for Le = 1, while flowing through a closed channel. Considering the
path of T and ¢ (represented by T(1)) with respect to the saturation line, it has been seen
that these properties may enter the supersaturated region (implying formation of fog in the
bulk) or, on the other hand, remain in the superheated region.

For a Lewis number Le equal to unity the film thicknesses for heat and mass
transfer are the same. These film thicknesses are also equal for non—convective problems,
and very nearly equal in most laminar convective flow situations, when the Lewis number

iz not exactly equal to unity.
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2. THE FOG FILM MODEL

§2.1 Introdugction

In the film considered in the previous chapter fog can be formed, if the temperature and
vapout fraction profiles and/or the bulk properties’ path cross the saturation line. The
clageical film model analysis with resulting correction factors is then no longer valid and
applicable, since in the supersaturated film the energy and diffnsion equation are altered.

Supersaturation in mixtures has been the subject of many studies in the past,
relevant contributions are discussed briefly in the following. Piening (1933) observed no fog
formation in slightly supersaturated clean air water—vapour mixtures, owing to the absence
of foreign nuclei. Based on homogeneons nucleation at a critical satnration level, numerous
problems concerning supersaturated gas mixiyres have been treated. Turkdogan (1964) and
Turkdogan and Mills (1964) introduced the "critical saturation model" (CSM) to describe
the wall evaperation of metals into a helium atmosphere. For the same purpose this CSM
bas been employed and extended by Rosaer (1967), by Rosner and Epstein (1968) and
Selutie (1985) to model wall condensation of water—vapour in moist air, by Epstein and
Rogner (1970) to investigate methyl alcohol evaporation into an air atmosphere, and by
Hayashi et al. (1976, 1978) to describe the naphtalene sublimation into air.

In an early paper, Johnstone ei al (1950) observed, if sufficient foreign nuclei are
present, that fog formation sets in as soon as smpersaturation takes place. Asguming no
supersaturaiion to be possible, the so—called saturation condition, they derived an
erroneous expression to investigate the conditions for fog formation, see appendix F. The
saturation condition bas been employed fruitfully by Hills and Szekely (1964, 1968), Toor
(1971x, 1971b) and Aref'yev and Averkivev (1979) to investizate one—dimensional film

eystems. Forced convective wall condensation of water—vapour in air has been modelled
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two—dimensionally by Hijikata and Mori (1973), Legay—Desesquelles and Prunet—Foch
(1983, 1986), and Hayashi ef ol. (1981). Free convective wall condensation of water—vapour
in moist air has been studied successfully with the saturation condition by Koch (1986).

The central point of interest in all mentioned elaborations, except Aref'yev and
Averkiyev {1879), is the absence of a film analysis including fog formation and an
appreciable induced velocity. Bul in the previous chapter we have seen that in many
practical situations the induced velocity plays a role of major importance, and that the
basic film model approach is well suited to account for this velocity. In their original paper
Aref'yev and Averkiyev (1979) presenied a film snalysis of a mixture congisting of air and
water~vapour under evaporation conditions. Satyrated bulk conditions and equal thermal
and diffusional film thicknesses were considered and hence the entire film was assumed to
be saturated. Their numerical results indicated the significant effect of fog formation on
heat and mass transfer rates. However, superhsated bulk conditions and the possible
existence of both superheated and saturated regions in the film were not considered, nor
the application of the fog film model to channel flow.

In this chapter therefore a complete film model analysis is presented, whereby a
superheated bulk and unequal film thicknesses are allowed. First, the conditions for fog
formation are analyzed thoroughly. Subsequently, the existence and magnitude of
superheated and saturated regions in the film ig determined precisely, illustrating the role
of the decisive parameter Le (it will be demonstrated that superheating in the film is
possible for Lev < 1, notwithstanding a saturated bulk). The governing equation of
diffusion and energy in the fogging region, coupled with the saturation condition, is first
solved numerically. The possible existence of both a saturated and superheated region in
the film, and the effect of fog formation on heat and mass transfer, is illustrated in various
saturated air water—vapour mixiures.

Next, an asymptotic analysis is catried out, yielding an excellent approximate

golution of the fog layer's governing non-linear equation. This sclution supplies relizble
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analytical expressions for the correction factors, which are suitable for the dimensioning of
heat exchanging devices, such as condensers or evaporators. The application of the fog film
model to closed channel flow is demonstrated in detail and illustrated by means of » flow
chart. In the last but one section the approximate solution is applied to evaporation of
nickel into helium. The solution iz compared with tesults of foregoing studies which

neglacted the effects of both the induced velocity and fog formation on evaporation rates.
£ ¥ g

§2.2 Film analysis

In this section the heat and mass transfer in a Blm as described in £1.2 iz analyzed,
extended to include the possibility of fog formation. An elementary study of the vapour
mass fraction and gas temperature profiles in the film yield the exact circumstances nesded
for fog formation, The alternative diffusion and energy cquationm, in the case of fog
formation coupled with the saturation condition, are then derived and solved numericaily.
Correction factors are then introduced which will be compared in the next section with the
correction factors for the conventional film model without fog formation.

Relation (1.50) deseribes mathematically the connection betwesn the vapour
concentration ¢ and the temperature t in the film of a binary mixture. This curve can be
located such that 3t crosses the saturation line F(t) of the vapour. In figure 1.7 twa
examples were drawn for either suction or injection situations. The possible intersection of
G(t) and ¥(t), enabling the formation of fog, is now examined by considering the siope

conditions:

5t 1-g
Ln[—-—-——}
ar {dG ueci—ll:evac 1-—<:i . ,
- = vi,— 1. @ - 3 ( ‘1)
dt . dt L b
1
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for suction and, with & rearranged right hand side;

dr] _agl _ %% G
ar| oel K% G (22)
dt r’i dt i Ec ¢ b i

for injection. In equation (2.2) the conventional film model carrection factors (1.19) and
{1.25) have been inserted. When equations (2.1) and (2.2) are not satisfed, the curve G(t)
is situated entirely in the superheated region, and fog will not be formed, see figure 1.7 for
two examples. Consequenily, the classical film model cotrections remain valid. However,
when these requirements are not satisfied, the curve (1.50) intersects the saturation ling.
Assuming no supersaturation to be possible, fog will then be formed in part, or all of the
film, In sppendix B the use of criteria (2.1) and (2.2) is discussed in detail. The film,
superheated and/or saturated, is analyzed befow.

The first step is to divids the film into a fog or saturated layer {0 £ ¥ £ 63) and &
superheated layer (65t $yébor 5t). The fog layer thickness &, lies between zero (i.e. no
fog formation) and 6. or §, when the entire film is saturaied. But 6a is at the present
unknown and will be determined later on. Plural saturated and superheated regions in the
film have been excluded implicitly, though it is demonstrated in appendix B this featuze
cannot be proved mathematically for Le < 1. Secondly, ai the boundary of the
superheated and saturated regions the temperature is denoted by:

tly = 6,) =6 (23)

a !

and the vapour mass fraction must obey the requirement:

dy=14)=c, . (24)
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The vapour mass fraction up to and including the boundary of the saturated region is

related to the temperature by the saturation ¢ondition:
e = Ft) (eeet) . {2.5)

Thig so—called saturation condition has been utilized fraquently in the past, as discussed in
the introduction. The saturation econdition holds in general when sufficient particles are
present in the mixture which can serve as nuclei for condensation. According to Steinmeyer
(1972} these conditions are indeed often fulfilled in practical situations. The level of
supersaturation, which thérmodynamically always must be non—zero, can then be
considered as negligibly small. Moreover, for the anatysis it is in fact not relevant which
relation between c and t in the fop region ig selected, which is to say that F{t) can also be
the result of a CSM, here the saturation condition is employed in view of its convenience
and accaracy to most practical situations.

In the analysis of the fog layer the droplets created (and tramsported, e.g by
thermophoresiz) are not explicitly considered and the physical properties in the
superheated and saturated mixture ace therefore assumed to be identical. This approach is
quite acceptable since the fraction of droplets in mixtyres is nsually very small,

In the superheated region the diffusion equation (1.2) with induced velocity (1.3) is
still valid. Bolving this equation with boundary conditions (1.5) and (2.4) yields:

¥ - tsaLn[I - Cb]
Zc_ aa a
ey)=1-(1-¢)e (§,¢y58) - (2.6)

The temperature distribution is obtained by solving equation (1.7) with application of
gquation {2.6) and boundary conditions (1.9) and (2.3), resulting in the temperature

profile:
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Eliminating (y — ﬁa,)/(ﬁc — §,) from equations (2.6) and (2.7) results in the following

relation between ¢ and t in the superheated region:

b éa‘ Ln[l ~ cb] Le
_ _ t — ta. Eevlﬁc- Eai I Gy, 1 ) v
C—G(t)—l+(ca“"1)[ﬂ8 +
(2.8)
(ta ¢t tb)

For §, = 0 (ie. t, =1 and ¢, = e,) solutions {2.8)—(2.8) reduce to the solutions (1.6),
(1.10) and (1.50) of the conventional fitm,
At the boundary of the saturated amd superheated region the concemtration and

temperature (and physical properties) are continuous, as are the energy and mass flux:

it

dt
k : (2.9)
lyeg, = Wlyos,
saturated superheated
region region
and for the diffusion equation:
D dc b de
™5eEy| , “TicdEy,_, (2.10)
y—ﬁa —5a

saturated superheated
region region
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The temperature and vapour concentration in ihe superhested region are already known,
gee equations (2.6) and (2.7), but in the saturated region they have yet to be deiermined.
However, in the saturated region the concentration and temperature are coupled by the
saturation function (2.5). Combining equations (2.9) and (2.10) to eliminate the

y—dependence and applying equations (2.5} and (2.8) yields as tangency condition:

Le6(bf ) )""[i = Zb]
d—El =461 _p, a— -1l . e

dif, dtf, RN

Equation (2.11) prescribes continuity of the first derivative dc/dt as given by equation
(2.8) in the superheated region and by equation (2.5) in the fog layer. Additional
information about use and featuras of equation (2.11) is given in appendix B. Equation
(2.11) contains two unknowns, namely t, and £ (since ¢, = F(3.)). In order to detive a
second equation with both unknowns and to complete the analysis of the film, attention is
now focnssed on the fog la.yér next t0 the wall (0 <y £ §,).

In the fog layer vapour disappears by sponianeous condensation and as a result of
the droplet formation latent heat is liberated. In this layer the energy and diffusion

equation, as derived in appendix A, therefore read:

d% A% v dc di

kd_s,ﬂ+ a?a—— H K R (212)
d? dc d
pmd—§+1-£—caﬂai K(l-¢) , (213)

with as respective boundary conditions {1.8) and {2.3), and (1.4} and (2.4). In squations

(2.12) and (2.13) K represents the mass of formed fog in the mixture per unit volume.
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Fliminating K from these equations produces:

re 47 _dln(i — cjgs_ Flat de(1= o)
¥ dy? dy dy “pv dy?

(2.14)

This equation is an ordinary non—linear second order differential equation in t with respect
to the coordinate ¥, since ¢ is expressed by the saturation equation (2.5) as a function of t.
As 2 solution in closed form is mot possible, the boundary value problem (2.14), with
boundary conditions (1.8) and (2.2), is solved numerically with a standard shooting
method. Detailed information about this sclution technigue iz found in Hall and Watt
(1978). In order to prepare equation (2.14) for this solution method, the dimensionless

variable:

Y=—, (2.15)

is substituted into equation (2.14). By this substitution equation {2.14) remains exactly the
same form, but the domain of integration is transformed into 0 <Y ¢ 1.
‘The second equation containing i, and 63. is now obtained by combining the

numerical aclution of equation (2.14), and equations (2.7), (2.9) and (2.18):

1 - %
&, 1 (4 1k'i!.!.)["ln'[i = ca]
L_q14 ] (2.18)
P dt b= 9 Iy
a Le, & T Ln[l__c}
Voay v=1 e e (8 8,) A

-1

In this equation the first derivative of the temperatdre with respect to ¥YinY=11is

gsupplied by the numerical solution of equation (2.14).
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The combined iteration of equations (2.11) and (2.16) yields 4, and t,. To employ
this simultaneous iteration the boundary problem (2.14) has to be solved for every value of
ta, during the iteration. To decouple both equations and reduce the computational effort,
equality (1.49) could from now on be supposed to be valid. Rather than setting Nu = Sh,
though it s acceptable for many transfer processes, the magnitude of the term (6, = ‘5a)/
(d, — 6,) is evaluated in the following.

In the case in which no fog is formed in the film, so that K is identically zero in

equation (2.18), the vapour mass fraction, ¢, at location y = 4, is given by:

& ._Ln(l - o) — La(l — ¢;)

= {2.17)
B8y Infl — o) ~ Infl - c)

since then Zn(1 — ¢} depends linearly on y in both the saturated and superheated region. If
equation (2.17) is supposed to be valid when fog i3 present and is inserted into equation
(2.11), 63 is eliminated from the right hand sides of equations (2.11) and (2.16). Hence,
equation (2.11) produces readily ty» and with this t, equation (214) is solved, and with the
numerical solution §, is obtained explicitly from equation (2.16). A similar simplification
follows in fact from inserting equality (1.49), as discussed above.

However, equation (2.17) is only an approximation when K # 0 and the error
involved by assuming (2.17) has to be assessed. The amount of formed fog has been derived
in appendix A, expressed by equation (A.17). It has furthermore been discussed in this
appendix that the amovnt of produced fog is greatest where the temperature of the fog
layer is lowest. Por evaporation this temperature corresponds o t,, while for condengation
this temperature i3 found at the interface, thus t = t;- Equation (2.17) is viclated the most
if this maximnm value of K it supposed to apply throughout the entire fog region.
Integrating equation (2.13) twice with respect to y, and application of boundary conditions
(1.4) and (2.4) then yields:
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In{l—c(y)) = —4p (F)* + (2.18)

(Ln[r__%]wp)gﬁ Ifl—c) (0¢y<d,)

i

where p follows from equations (2.15) and (A.17):

2 2
g e =) [ By e A OE
o lay o 1 — F dt 1= F di?dey (5
ay

A Le + Hiat 1 ar
M cp,v 1 = F dt

The relation between film thicknesses and vapour fraction follows from combining

equations (2.6), (2.10) and (2.18), yielding:

8, . In{l — cb) = Lnl ~ ¢;)

6(: - 63. En(l — cb) — Ln(l = Ca)

(t+¢ , (2.20)

with:

ip

fe , (2.21)
La(l — ¢}~ La{l — ¢))

25 a measure of the error occasioned by assuming equation (2.17). Equation (2.17) is

rewritten as:

8 — & ) In(l — ¢) — Le{l — ¢;)
LA IR S S A e (2.22)
6, — 0, & Ln(l = o) — Le(l — c))
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For wall evaporation the actyal effect of b ¢ Ec i8 greater than expressed by this equation
snd equation (2.17), as ¢ > 0, while for condensation equations (2.17) and (2.22)
exaggerate this effect, since then ¢ < 0. However, equation (2.29) reckons to some extent
with unequal thermal and diffusional film thicknesses, while its application decouples
equations (2.11) and (2.16) and therefore reduces the computational effort. From now on ¢
i8 therefore considered to be zero, the actual magnitude of ¢ is assessed in the next section
for sorme practical sitvations.

The corzection factors of heat and mass transfer will now be derived. With
equations (1.23) and (2.15), the transferred heat (1.21) is written as:

8, dt

q=h 425 ) (2.23)
g
8 d¥|y_g

Comparing equation (2.23) with the heat flux in a film withount fog and without induced

velocity, represented by equation (1.22), yields as correction factor:

§ o
_ & Wy

0 (2.24)

tf

The mass flux from gas to wall is governed by equation (1.15). Combining this equation

with equation (2.5) results in:

| QEJ a (2.25)

1 - P(t) dt i dyL=0
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A comparison of equation (2.25) with equation (1.16) and application of equations (1.17)

and (2.15) results in the following correction factor for diffusion:

b aF d_t‘
O, ;= fa 4t1 Wlyag (2.26)
’ (op - ¢5)

The gradient of temperature at Y = 0, appearing in equations (2.23), (2.24) and (2.26),
fallows from the numerical solution of equation (2.14). It can easily be verified that in
general betwesn the fog correction factors for mass and heat transfer, © and @, ¢
¥ 1
respectively, the relation exists:

ty, — t ¢

_’b idlf c
E')c,f TG T

— . ;
b idt tiﬁt

(2.27)

pwing to the saturation condition (2.5) in the fog layer,
An additional interesting property which can be determined with the numerical
solution of the combined energy and diffusion equation (2.14) is the amount of formed fog

in the saturated layes:

rhf = Kdy . (2.28)

Apolying equations (1.23), (2.12) and (2.15), equation (2.28) yields:

h, & ]
e d_t| _d_t| ! 1 d_cgt_dyl  (239)
Hlat (5a Ay Y=g dy el Lev Y=01 ~ ¢d¥Y dY
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The first derivatives of t with respect to'Yin Y = 0 and Y = 1 follow from the numerical
solytion of equation (2.14); this solution is alse employed to calculate numerically the
integral in equation (2.29) with Simpson’s rule.

The amount of formed fog, represented by equation (2.28), is the same for
evaporation and condensation, which is explained as follows. Equation (2.14) remains the
same form when y is replaced by the eoordinate «Sa =¥, only the boundary conditions (1.8)
and (2.3) being exchanged. In other words, evaporation conditions become candensation
conditions, or vice versa. The solution of the equation (2.14) with exchanged boundary
conditions is therefors the reflection of the omginal equation®s solution in the line y =
0.58,, hence t(y) curves for evaporation and condensation are symmetrical with respect to
the line y = 0.54,. A similar ¢onsideration of equations {2.28) and (2.13) provides evidence
that the amount of fog formed for condensation and evaporation is positive and equal.

A complete analysis has been given in this section of a film with possible formation
of fog. Equations (2.1) or (2.2) serve to examine whether fog is formed; when this is the
case tangency condition (2.11), combined with approximation (2.22), provides the
boundary of the saturated and superheated regions (ta’ Ca.)‘ Ultimately, the numerical
solution of the governing equation (2.14) provides the temperature and coupled vapour
concentration in the saturated region, yielding the fop layer’s thickness (2.16), the

correction factors (2.24) and (2.26), and the quantity of fog formed (2.29).
§2.3 Results of numerical solution,

The influence of fog formation on heat and mass transfer will be greatest when the entire
film, is satnrated. That is to say, when the bulk temperature tb and bulk vapour fraction %
are situated on the saturation line. In a condenser or evaporator this condition corresponds

to a saturated reixture entering and flowing through a channel. To indicate the effect of fog
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formation results are presented based on the model derived in the previous section. As
example saturated air water-vapour mixtures at low temperatnres and vapour mass
fractions are considered, as well as saturated mixtures at high temperatures and vapour
fractions. Both mixtures are examined under condensation conditions, thus S * % and
equal thermal and diffusion film thicknesses. The former conditions are for instance found

in air—conditioning devices, while the latter are typical of condensers.

.

Le, O /0 ©.n/® My My g n/te |

ty = 30°C 0.50 1.218 0.924 0.391  0.393 1.000  0.086
ey, = 0.0264 0.76 1.192 0.901 0.350  0.352 1.000  0.120
1.00 L1TO 0.883 0.316 0317 1.000  0.136
1.28 1.153 0.868 0.288  0.289 1000 0.148

iy = 60°C 0.50 2418 0.791 2.080  2.001 1.002  0.738

o, = 0.1318 0.75 2301 0.723 1.883 1.618 1.001 0.805
1.00 2,180 0.671 1.731 1.762 1.001 0.819
1.25  2.073 0.630 1.601 1.629 1.000  0.810

Table 2.1 Results of numerical solution for (ti, ci) = (20°C, 0.0144), Ja/é'c = 'Sa/é"t

= ] for all cases.

For the first case considered, (ti' Ci) is set equal to (20°C, 0.0144); this point is situated on
the saturation line of a air water—vapour mixture under atmospheric conditions, as derived
in appendix C. The bulk values (tb, cb) are successively set equal to (30°C, 0.0264) and

(60“0, 0.1318), all sitnated on the same saturation function. The latent to specific heat
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ratio Hlatlcp,v of water—vapour is set equal to 1200 K. Calenlations are carted out for Lev
equal to 0.5, 0.75, 1 and 1.25.

Evaluating equation (2.11) showed that for all cases the entire film is fogged, thus
6 = 8, = & and (t,, ¢ ) = (i}, ¢,). Substituting the greatest ty, in equation (C.12)
produces as maximum H(tb = 80°C) = 0.13, which is well below the smallest Lev, namely
Le, = 0.5. The afore—said values sssure that Le  is greater than H(t) in all considered
fogging films, which is a condition for X > 0, see appendix A. In table 2.1 the correction
faetors according to equations (2.24) and (2.26), compared with the conventional correction
factors (1.25) and (1.19) respectively, are listed. In this table also the dimensionless fog

formation:

My = L :fia:_) (2.30)
AR S
is inserted. This number is the ratio of tramsported sensible heat (heat transferred by
conduetion) through the film, in the case of no fog formation and no induced velacity, to
created latent beat in the film by fog formation and in the presence of an induced velocity.
The large deviation of the correction factor ratios from unity illustrates the
substantial influence of fog formation on both heat and mass fransfer. The sensible heat
transfer ratio is larger than unity, which would be expected since spontaneous condensation
in the film causes exira sensibie heat generation. This condensation is at the expense of the
diffusional vapour transport from bulk to wall, Indeed the ratio of the diffusion correction
factors iz smaller then umity. For small vapour mass fractions, the latent (this is heat
transferred by tramsport of vapour and liberation of latent heat) and sensible heat transfer
in 3 heat exchanger are of the same magnitude. Becanse both kinds of heat transfer are
seriously affected by fog formation, it is interesting to calculate the total amount of

transferred latent and sensible heat from film to wall:
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Qo =9+ 1M e o (2.31)

for the classical film model and fog film model. In table 2.1 the ratio of g, according to
the numetical solution and according to the conventional film model is listed. All tabled
values are close to unity, implying the total amount of transported heat is hardly altered
by fog formation, only the contribution of latent and semeible heat is different. Toor
(1971a) derived analytically that in a film without induced velocity, 1 =--c, ¥ tand Le =1,
the ratio of transferred heat is exactly equal to unity. As the physical situations of table 2.1
are similar, one can conclude that the numerically obtained ratios are in agreement with
the aforc—sald analytical result.

In table 2.1 also the maximum error introduced by assurnption (2.17) {or equivalent
equation (2.22)) is listed, e defined by equation (2.21). The error increases with increasing
fog formation levels, which might be expected, but remaing within an acceptable magnitude
for realistic conditions (the upper ones of table 2.1).

Tor the second group of caleulations (t;, &) is set equal o (94.81°C, 0.75), and the
bulk values (&, ¢,) equal to (97.63°C, 0.875) and (99.90°C, 0.995). All points are again
sitnated on the saturation line of an air water—vapour mixture. These temperatures and
concentrations are relevant to condensers. The calculations are carried out for LEV cqual to
0.8, 0.9, 1 and 1.1, the same latent to specific heat ratic, and equal thermal and diffusion
film thicknesses. The values of Le  are different from those of the previous set of
calculations since an evaluation of equation (2.1) indicated that for all afore-mentioned
condenser conditions and Le  equal to 0.5 and 0.75, fog is not formed at all. For these
small Le_ values the convex curve (1.50) is entirely situated in the superheated region.
Thus, although the interface and bulk properties are both situated on the saturation line,
fog is not formed. Consequently, the conventional correction factors (1.19), (1.25) and

(1.37) retain their validity for these cases.
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Lev G)t,fl/@i‘. ec,ﬂ/@c Mﬂ Mﬂ f5:1"’5(: qtot,ﬂ/qtot H(ta)

= 97.63°C 0.80 1.019 0.889 0,031 0.026 0.37 1.000 0.77
& = 0.875  0.90 1.062 0.99%9 0121 0121 1.00 1.000 0.84
100 1.098 0.989 0198 0198 1.00 1.000 0.84
110 1129 0.999  0.26r 0.261 1.00 1.001 0.84

tb =90.90°C 0.0 1.000 1.000  0.000 0.000 0.00 1.000 0.71
= 0.995 090 1.080 0.988 0356 0.346 0.14 1.000 0.82
100 Lim 0.6%9 0.778 0.780 1.00 1.000 0.9
110 1.29% 0.988 1132 1.135 1.00 1.000 0.99

Table 2.2 Results of numerical solution for (tl., Ci) = [04.81°C, 0.75).

I table 2.2 the calculated correction factor ratios and dimensioniass fog formation levels
are listed for the cases considered. As for some ¢ases the flm is now partly or even entirely
superheated, the dimensionless fog layer thickness 5a/‘5c is also included in this table, 0 ¢
8,/ 5(: = 63‘/:5t < L In figure 2.1 the determined temperature and concentration profiles in
the film, with y as parameter, for Lev = 0.8 and 0.9 are drawn a5 example, For Lev = (.8
the curve G(t) is situated in the superheated Tegion, as correctly predicted by equation
(2:1). According to this equation fog is formed for Le, = 0.9. With equation (2.11) the
border of the superheated region (ta, ca) has been determined. In fignre 2.1 the continnity
of the first derivative defdt at the boundary between saturated and superheated zopes is
evident. In table 2.2 or figure 2.1 it can be seen that for the examined situations the film

can be entirely superheated, partly superheated and saturated, or entirely saturated. The
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correction factor ratios for heat and mass transfer differ most from unity, of course, when
the entire film is saturated. For LeV > 1 the entire film is always saturated when the bulk i3

saturated.

Ll F(t) /
%4 /
v

supersaturated /

// Gt} Le, =09
05 A e l1) Le, =08

“d
“d

&

superheated

0 05 Loy 1

B Y

Figure 2.1 Behaviour of vapour concentration and temperature in the film with

respect to saturation line, (1, ¢;) = {94.81°C, 0.75) and (tb, cb) = (89.80°C, 0.895).

This featvre of the film for LEV = 1 was employed implicitly by Arefyev and Averkiyev
(1979) and is explained in appendix B. In table 2.2 H(ta) has been included, see equation
(C.12), with t, = t; substituted for a superheated film and t, = t, for an entirely saturated
film. One can readily see that the maximnm H(ta) of the film is smaller than Le for all

cases examined, thus K > 0 is assured. In appendix B it is deduced that t, is always such
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that H(t ) < Le_ is fulfilled.

A glance at the total transferred heat and the diffusion correction factor ratics
shows that these are mow both nearly unity, even for completely saturated films. This
means that fop formation does not seriously affect the vapour diffusion and latent heat
transfer in condensers. In condensers, however, the main part of transferred heat is latent
heat; Sparrow et al (1987), for example, demonstrated that the sensible heat transfer is
negligibly small hecause the temperature difference between wall and bulk is very small. As
the diffusional mass transfer is hardly altered by fog formation, not only the overall heat
transfer in 4 condenser will be the same in the cage of fog formation, but also the dominant
latent mode of heat transfer will remain the same. Or in other words, for condenser
calenlations the conventional film model will predict heat and mass transfer rates
sufficiently accurately, with or without fog formation.

The relatively unnimpertant effect of fog formation in condensers is once more
llustrated by the small amount of fog formed, see Mf in table 2.2, One must be aware
when the actual amount of formed fog is considered, that the temperature differences (tb -
ti) pertaining to table 2.1 are much larger than those pertaining to table 2.2, As the
maximum introduced error ¢, which is correlated with K and rhf, ig also much smaller for
the here studied physical situations, it has not been listed in table 2.2.

In the analysis of the previous section no attention has been paid to the film
momentum equation in the case of fog formation, nor has there been derived a correction
factor for friction in a fogged film. The correcticn for suction or injection is only of
importance when the vapour masa fractions are large. The calculation of diffusional mass
transfer in the case of fog formation has shown that the diffusion profile in the film is
significantly altered only for small vapour mass fractions. But for small vapour mass
fractions the mase flux ag such iz wmall and thus the friction correction factor close to
unity. For large vapour fractions the correction becornes important, but for this ease the

concentration profile, and pertaining mass flux, is nearly unchanged by fogeing.
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Accordingly, the author confines himself by supgesting a substitution of the mass flux in
the conventional correction factor (1.31) will be a good approximation of the true friction
correction factor. The substituted mase flux may be calculated by either the classical or the

fop film model.
§2.4 Asymptotic approximation solution

In the previous section the coupled energy and diffusion equation (2.14) of the fog layer has
been solved numerically, To this end, a standard shooting method was employed to solve
the boundary value problem. This numerical method consiste of a combined integration
and iteration routine to find a solntion which satisfies both boundary conditions (1.8) and
(2.2). In the context of an operating heat exchanger t; and ¢; = F(t;) have to be calculated
iteratively, since the interface temperature and conceniration in g evaporator or condenser
have to obey 4 local energy balance, and are not known ¢ priers. The coupled application of
an iteration for i, and a shooting method to solve equation (2.14) for each cycle of this
iteration, yields long computation times. The derivation of an asymptotic approximate
solution of equation (2.14) is therefore desirable and this is presented in this section.

In order to derive an approximate solution of equation (2.14), an agsessment of the
order of magnitude of the diverse terms is first carried out. For small vapour mass fractions
the first term on the left hand side of equation (2.14) is of about the same magnitude as the
term on the right hand. The latter is of importance because, even for small ¢, this term 18
{arge by virtue of the presence of the latent specific heat ratio. This becomes evident when
the typical values appearing in table 2.1 ate considered and one realizes that Le is of order
unity and H at/cp,v is of order 120—1200 K for most vapours. The second and non—tinear
term on the left hand side is very small when compared with the two afore—said terms of
equation {2.14). For large vapour mass fractions (see table 2.2 for typical values of ¢ and t)

the term on the right band side completely dominates both the other terms in equation



67

(2.14). Thus again, the non—linear term plays ro role of importance.

The considerations of small and large vapour concenirations yield the relative
unimportance of the second and non—linesr term on the left hand side of equation (2.14).
Evaluating the equation without this non—linear term yields indeed a promising agreement
between the reduced solution and the compléte numerical solution of equation (2.14). Yet,
a much better agreement is obtained by assessing the conmtribution of this term to the
complete solution,

The non—linear term only becomes of some importance for large vapour fractions,
when it exceeds the other term on the left hand side of equation (2.14). But again it must
be stressed that under these circumstances both terms are small in comparison with the
term on the right hand side of the equation. Mathematically, then, for large vapour

fractions the solution of:

] —
dL-nd(12 g | - (2.32)
¥

accurately approximates the complete solution of eguation (2.14). Integration of equation
(2.32) and application of the benundary conditions (1.4) and (2.4) yields;
¥ [1 -c a,]

T,
c(y)=1—(1—ci)ea' !

(0gysd) - (2.33)
Thig solution for the saturated layer, combined with solution (2.6) for the superheated
layer, corresponds exactly to the undisturbed diffusion profile (1.6) of a film without fog
formation. Thig is the reason that for large vapour fractions the conventional diffusional
correction factor without fog almost coincides with that of the film model with fog, as

confirmed by the numerical results listed in table 2.2,
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To obtain a higher order approximate solution of equation (2.14), the zero—order

solution (2.33) is substituted in the non—linear term of equation (2.14):

I =c ;)
4% 1—Ln[1 - cﬂ db _ Clat d*Ln{l — ¢) ‘ (2.34)
dy Cpyv @y

The asymptotic solution (2.33) has heen substituted in the non-linear term since only for
large vapour fractions this term becomes of some importance. For small vapour fractions
this term i3 still dominated by both other terms appearing in equation (2.14) or {2.34).

Equation (2.34) is integrated twice with respect to y:

¥

1 -
y-—-
(2.35)

MHIath(lm())-J,-K +K, (0¢y<5)
o v wy 1Y 2 ER Y

Applying boundary conditions (1.4), (1.8), (2.2) and (2.4) yields the integration constants:

b)

Le, (t, — t) 1 —c¢w H a
Kl=%—;—Ln[l — ca] [#+L J tdy] . (2.96)

a a ! p,v a y=0

and:
H
K, =Le t, =2k (1 —c) . (2.57)
B,V

The integral appeating in cquation (2.36) is assessed with the help of the zero-—order
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sclution (2.33). This equation constitutes an expression for ¢ a3 a function of y, while t as &
function of y is needed to solve the integral. In the fog layer, hawever, ¢ is determined by
the saturation function (2.5) as a function of t, and conversely, t i5 a known function of ¢.
In appendix C the inverse relation is derived for an air water—vapour mixture. ¥owever,
this complex relation permits no further analytic treatment of the integral. As a
compromise, therefore, ihe satmration line in the saturated region is now romghly

approximated as a straight live between (1;, ¢;) and (v, c,):

G - G

_ pinv, 5 o i _
t=F (c)z‘"'a,_"i(ta L)+

(g gete,) - {2.38)

In equation {2.38) for ¢ the zero—ordet solution (2.33) is again substituted and the integral

in equation (2.36) is solved analytically as follows:

g

3 1.1 —e) — {1 —¢) LR
i J tdy = 2 . O (2.39)
a y=0 a : Ln[i_—f-]

1

Substitution of equation (2.39) into equation (2.36) now yields:

{t, - %)
K1=(Lev—1)%—
a
2.4
1 Ln[l - Ca] {Hlat +ta(1 —) —ylt—ey ”
$ 1 - ¢ cp,v ca -G

a

A complete approximate solution (Z2.35), combined with equations (2.87) and (2.40), of

eguation (2.134) has now been realized. The dimensionless fog layer thickness is obtained by
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combining equations (2.5), (2.7), (2.9), (2.22), (2.35) and (2.40);

1l - cb
5, ) (ty — ta)Ln[l -_ca] (Le, +
=14
I —c [] 1 —¢
5 S| 1 [ 1] t [ b] (Le, — 1)
a L7 + L - v
e'Le_v I~c, Le %, l—c.jﬁ1
(2.41)
Hae 1 aF
Co,v = Ca dt ¢
a
1 —c¢qcH b, {1-¢) — (01 — ¢}
al[lat ) i i a
(ty = 4 - L"[l - Ci][cp,v Tty T &~ & _—]

The thermal correction factor follows from equations (1.21)-{1.23):

;&

b
dy|,_
= —=0 (2.12)

Ty b))

The first derivative of { with respect to y at the wall, according to the approximate

golution, is determined with the help of equations (2.5), (2.35) and (2.40):

1)
g 4t =2, (2.43)

3
dy v=0 5;1

¢ T c — G

1- Ca] [Hlat - t&(l_ C]) - ti(l_ Ca)]
P.v a 1

(Le,— 1)t 1) - Ln[1T

1

H
te 4 olat 1 dF

v ¢ T —¢ dt
p.v 1 b,
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The dimensionless fog layer thickness in this equation is given by equation (2.41). The
diffusional correstion factor pertaining to the spproximate solution can easily be obtained

by combining equations {2.27) and (2.42):

; dF d_tl

c
di|t, d;

(Cb‘ ci)

@)c,f

The amount of formed fog is determined by equation (2.13) and (2.28):

(dLn(l — C)

ﬁaf=pD . _din(l — &)

” ) . (2.45)

y=5,

=0
This equation, combined with equations (1.28), (2.35) and {2.36), is written as:

=_hs.[591 st

Lo +ium[l_—cﬂ] . (2.46)

m
2 t \ 1 — ¢.
dy y=0 dy y.-—-ﬁa Ja Le,

The first derivative of t in y = { in equation (2.46) follows from equation (2.43), the first

derivative in y = &, is caloulated by combining equations (2.8), (2.35) and (2.40):

)
P - (247)
dy Y='58' 6'3
L. ¢ 4 H t (1= c.) = t.(1— c )
lat a i i 3
(Le-l)(t-t.)—lm[_ a][ -t — ]
v a i 1 ci cp,v u ca ci

H \
lat 1 dr
Lev + [ I —¢. dt
D,V a ta
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The dimensionless fog layer thickmess appearing in equations (2.43), (2.46) and (2.47)

foflows from equation (2.41).
§2.5 Results of asymptetic solution

In this section similar calculations to those presented in §2.3 are carried out to compare the

predictions of the agymptotic approximate solution with those of the complete numerieal

solution.

Le, O /0y ec,ﬂfec My My Gy /%0t Lel

t,=30°C 050 1218 0.924 0.201 0.393 1000 0.006
¢ = 0.026¢ 075 1192 0.901 0.350  0.352 1.000 0120
100 LT 0.883 0.316 0.317 1000 0.136
125 1153 0.868 0.288  0.280 1.000  0.148

ty, = 80°C 0.50 2.411 0.789 2.085 2.068 0.089 0738
¢, = 0.1318 0.75 2.297 0.721 1.871 1.916 0.999  0.802
1.00 2.177 0.670 1.722 1760 1.000 0.817
125 2.071 0.629 1.504 1.627 1.000  0.209

Table 2.3 Results of approximate solution for (t;, ¢;) = (20°C, 0.0144), 6,18, =
63/ 6’0 = 1 for all cases.

In tables 2.3 and 2.4 the results of these calculations are listed which correspond with the
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computational results of the complete model, a8 listed in tables 2.1 and 2.2, respectively.

To determine the boundary of saturation {t,, c ), equation (2.11) has again been employed,

vielding identical (t,, ¢,) and H(t_) again, of course, for all cases examined.

A comparison of all values listed in tables 2.1-2.4, shows the maximum discrepancy

between numerical and approximate solutions is of about a few per mille. Even for the

largest difference betweean (ti, ci) and (tb, cb), the agreement is still very good. This large

difference belongs to unrealistically large sensible and latent heat fluxes from pas to wall. It

will therefore not be found in ordinary heat exchangers or condensers, it has only been

selected 4o create some deviation between the numerical and approximate solutions.

One can farthermere conclude from tables 2.1 and 2.3 that the error decreases with

increasing Lev.

Ley Oy /0y O /O M

ty, = 97.63°C 0.80
ey = 0.875 0.90
1.00
1.10

by, = 99.90°C 0.80
¢, = 0:995 0.0
1.00
1.10

1.019
1.062
1.098
1.129

1.000
1.080
1.181
1.288

(0.999
0.999
0.699
0.999

1.000
0.999
0.998
0.598

0.031
0.121
0.198
0.260

0.000
0.356
0.777
1.130

Mﬁ 53./ 'sc qtot,ﬂ/ Lot H(ta)

0.026 0.37 1.000 0.77
0.121 1.00  1.000 0.8¢
0.198 1.00 1,000 0.84
0.261 1.00 1.000 0.84

0.000 0.00 1.000 0.71
0.346 0.4 1.000 0.82
0.780  1.00 1.000 0.99
1136 100 1.000 0.89

Table 2.4 Results of approximate solution for (t;, ¢,) = (94.81°C, 0.75),
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For larpet Le_ the first term on the left hand side of equation (2.14) gains importance and
doweinates more the second term, resulting in a smaller deviation. For small vapour
fractions it is namely important for the approximation to be aceurate that both Le and
Hlat/cp,v are large. For large vapour mass fractions however, the error slightly increases
with larger Le,, see tables 2.2 and 2.4. For these physical sitnations it is important thai
B,/ Cov is large and consequently the right hand side of equation (2.14) dominates both
terms oft the left hand side. The approximation is based on the fact that Hla.t; /cp7v is large.
For water—vapour this ratio is close to 1200 K, but for a lot of other vapours it is a factor
10 smaller. A repetition of all calculations, with Hla,t/cp,v set equal to 120 X and all other
values nnchanged, indicated however that the approximation solution is still correct within
a few per cent. Sinee this etror is quite acceptable, the approximate solution is noi only
applicable to water—vapour, but to most other vapours as well.

In tables 2.1-2.4 only results pertinent to conditions found in air-conditioning
devices and condensers have been Listed. Computations carried out for intermediate vapour
fractions and temperatures, for ingtance found in exhaust gases from dryers, indicate that
the agreement is of the same high level as in the cases studied in detail here. Furthermore,
since the temperature as a function of y in the fog layer has been found to be sirilar for
evaporation and condensation, the approximation is applicable to evaporation processes as
well,

§2.6 Application of the fog film model to channe] fow

In preceding sections the conditions have been discussed under which fog formation in the
film occurs and modified correction factors derived. In this section the use of this extended
film model is demonstrated. This model includes the possibility that the bulk properties
move to enter the supersaturated region and that, as a result, bulk fog is created. Similar

to the conventional film mode}, here the bulk values b, and &y, are taken to be sufficiently
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approximated by the mixed mean values of these quantities in a cross—section.

f(x), c(x)
!

{t;; ¢;) with @, (eq. (1.19))

and @, (eq. (1.23))

(ta, ¢,) with (;, ¢} with
eq. (2.11) and eg. (2.22) @c,{ and @t,f

¢ + dc with eq. (1.36)
t + dc with eg. (1.39)

Mf with eq. (2.56)
N x +dx =end € + dc with eq. (2.53)
of channel T+ dt with eq. (2.54)
Y
END

Figure 2.2 Flow chart of the applied fog film model.
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A flow chart, drawn in figure 2.2, illustrates the procedure followed.
Determination of interface conditions (t;, &)

As discussed in a preceding section, in evaporators or condensers the interface {emperature
{; and associated vapour mass fraction ¢ (= F(ti)) is determined by 2 local energy balance.
The net latent znd sensible heat flux from or to an interface must be zeto, the fluxes on the
gas side being given by the conventional film model corrections for heat and mass transfer.
Once t; has been obtained, equation (2.1) or equation {2.2) for soction or imjectionm,
raspectively, is employed to determine whether the vapour concentration/temperature line
(1.50) is located in the supersaturated region. These conventional film model expressions
ate based on the assuraption of no intersection of this relation with the saturation line. If
this proves indeed to be the case, the t; and fuxes caleulated, according to equations (2.1)
or (2.2), are correct and the amount of fog formed in the film equal ‘o zero.

If, on the other hand, an intersection between equation (1.50) and saturation line is
detected, an alternative procedure has to be followed. IMxst, the temperature and vapour
concentration (ta.’ Ca) on the boundary of the saturated and superheaied regiom is
determined numerically with the help of equations (2.11) and (2.22). By employing a local
energy balance, 1, is then re—determined. But during this iterative procedure now the fog

correction factors © of and G-)t ; oré ntilized to predict the transfer on the gas side.
» ¥
Incremental mass and energy balances
As long as the bulk (or mean mixed flow) is not saturated (that is to say, (I, ©) is located

in the superheated region) the mixture’s incremental temperature and vapour

concentration change are still governed by equations (1.38) and (1.36). Note that it is
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possible for fog to be predicted in the flm without the bulk flow being saturated.
Physically this means that if the flow in a cross—section were mixed, fog present near the

wall would evaporate on contact with the superheated core fow.

Vapour
mans

fraction .9

superaatyrated

a

superheated

T T A ™

Tempriature

Figure 2.3 Path of mixture’s bulk properties (%, ¢).

The slope of the (T, €) path in the case of fog formation in the fllm is now obtained by
combining equations (1.36) and (1.38), and applying equations (1.17), (1.23), (2.25), (2.27)
and (2.42):
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-,
d& 4G bavly
G dat o, T-t (2:48)
1 idf| _,
ey T8 ge ],

In chapter | we have deduced the path of the bulk properties for the case that the film is
superheated. For the case fog is forxned in the film a gimilar result is now obtained by

separating the variables ¢ and ¥ and integrating:

F= T =
Lev
(-8, -Lefi-¢) Te (2.49)
1= (1 - Bx=0)) i ,
(Bx=0) -t;) §+ - Le (1 -c)

whereby as boundary condition the vapour fraction and temperature at an arbitrary
location, x = 0, has been applied. Bquations (2.48) and (2.49) are used to detect the
intersection of the path of the bulk properties and the saturation line. Equation (1.51) for &
superheated film and equation (2.49) for a (partly) saturated film hold up to the point
when the bulk flow is saturated (€ = F(T)) and the path of the mixture’s bulk properties is
ditected into the supersaturated tegion, see figure 2.3.

For condensation the condition for entry of the bulk into the supersatyrated region

then corresponds mathematically $o:

& _ aF

g (2.50)
dt  dt T
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and for evaporation:

& dp) (2.51)
at atl;

The incrementsal mass balance in the case of such & satnrated buk flow (i.e. one which
would be supersaturated and therefore fogged after mixing of a cross-section) flowing

through a channel reads:

c=c =

i(.@=_i[ ——l 2 82
dx Dh gnl"Eocl—ci""nf] ' {2.52)

Neglecting the fraction of fog droplets, for & binary mixture the channel mass flux (pu)(x)

can again be expressed in terms of the vapour concentration by equation (1.35), yielding:

@& -4 T—¢ g (1-7)°
O [ cl—cf"'_f]—"_— (2.53)
dx  Dy{pu)(x=0) i Bmd (1 - §(x=0))
The differential energy equation for the supersaturated bulk flow becomes:
dt —4b £ c ¢ - e
o _g [ t =R G)cl - c? (2.54)
dx chh(pu)(xm()) hg i
By 0-5)

(T~ ti)] Y TR

As the fraction of droplets iz very small, it is expected not to alter the mixture’s physical
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properties significantly,

In the energy equation the created bulk fop appears as a heat source, and in the gas
mass conservation relation as a sink of matter. This bulk fog weakens the temperature drop
and increascs the fall in vapour fraction in situationg with wall condensation, For wall
evaporation, the formed fog increases the temperature tise and reduces the vapour fraction
increment in a channel. The amount of fog in the bulk gas flow is such that the mixture's
bulk properties (£, ) follow the saturation line. Mathematically the effective amount of fog

is therefore calculated by requiring that:

& dE (2.55)
dt dtz

With the help of eguations (1.17), (1.23), (1.34), (1.40), (2.30) and (2.53)—(2.58), the

corresponding dimensionless amount of bulk fog can be determined as:

dF -y g L1 17C
G)tdt\ o %15 [L"e_dt»_"" ]

dr
dt

+ _C)T“'HL—

t

For a mixture with a (partly) saturated film and with bulk properties that enter the
supersaturated region, the fog film model corzection factors Gt,f and @ ¢, instead of @
and O, respectively, ghould be used in equations (2.52)—(2.54) and (2.56).

In tables 2.1-2.4 the bulk fog formation according to equation (2.56) has been
included with the Lewis number in equations (1.51), (2.48) and (2.56) chosen as unity and
equality (1.48) substituted, The amount of formed fog in the film is smaller than, but close

to, the bulk fog for all examined cases where the entire film was saturated (6, = &, = &)
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On the other hand, the formed fog in the film is larger than the bulk fog when the
film i5 partly superheated. This result would in fact be expected: the smaller the saturated
part of the film is, the closer the correction factors approximate the conventional eorrection
factors. For Le = 1 the bulk properties (%, £), according to the conventional film model, are
directed along G(t), which coincides with G{t), see §1.5. This implies when a larger part of
the film is situated in the superheated region, (T, €) is less directed into the saturated
region and more direcied along G(t). Thiz phenomenon becomes more pronounced when a
larger part of the film is superheated, which is indeed confirmed by tables 2.2 and 2.4. It is
interesting to observe that in such cases fog is present in a part of the flm near the wall
and in the bulk, both regions separated by a superheated film part. Furthermore, for an
entirely superheated film, e.g. see fignre 2.1 for G(t) pertaining to Le, = 0.8, the mixture
follows this curve. This means that the bulk remains entirely within the superheated region
while flowing through a channel: equations (1.51) and (2.50) then predict no entering of the

bulk properties into the supersaturated region and hence bulk fog is not formed.

§2.7 The effect of fog and induced velocity on nickel evaporation into helinm

One field of problems involving the combined effects of induced velocity and fog formation,
is the evaporation of iron/mickel alloys into stagnant helium. The enhancement of
evaporation by fog formation has been deseribed theoretically by Turkdogan (1964), Resner
(1967) and Hills and Szekely (1964, 1969), and investigated experimentally by Turkdogan
and Mills (1964). The two former investigators treated supersaturation in the gas in terms
of 2 C5M. In both papers the assumption was made that the temperature field in the film
is undisturbed by fog formation and therefore remains a linear function of the coordinate.
This representation of the process is only allowed for cases where the vapour is extremely
ditute. On the basis of 2 combined analysis of the energy and diffusion equations, coupled

with the basic saturation condition, Hills and Szekely (1969) obiained good agreement with
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the experimental data of Turkdogan and Mills (1964). In their analysis of nickel
evaporation, however, the induced velocity in the flm was not taken into account. In this
section therefore their model's domain of validity is extended by application of the
approximate solution of §2.4.

The total absolute pressure Ptot of the system amounts to 1 atmosphere (= 1.01325
bar) and the bulk properties concerned are: ¥ = 77°C, T = 0. The interface vapour fraction
¢, is a function of t; and follows from appendix C. The liquid saturation pressure is
applicable since t; 1500°C, which is well above the melting point of nickel (& 1455°C). In
the vicinity of the wall the fog droplets are in liquid state ag well of course; but Turkdogan
(1964) furthermore discuseed that the droplets remain also in a liquid state for
temperatures of 300=-400°C below the melting temperature. As the coupled heat and mass
transfer is poverned in the vicinity of the surface, and the difference between liquid and
solid vapour pressure is modest for t < 1100°C, the liquid vapour presgure is taken to
prevail in the entire flm.

In view of L being close to unity (typically Le = 2.2, see Rosner {1967)) and the
absence of externally imposed flow, the approximation §, = ﬁc is applicable. The specific

heat of the mixture follows from the expression for perfect monatomic gases:
o =2 {2.57)

where R i the universal gas constant, see appendix C. The mean molecular mass M is
evaluated with the help of the arithmetic mean of the mole fractions of nickel and helium
at the interface and bulk. The specific heat ¢ B, of nickel follows readily from equation
(2.57) when M = M, is substituted. Substituting all afore—said values in equation (2.11)
vields as boundary of saturated and superheated region (t, = 79.5°C, G o 0). Since t; >

1500°C the conclusion can be drawn that (ta.’ c,) 8 (t,¢) and hence 8, /8, = &,/8, ¥ L: thus
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an entirely fogging film, which has been agsumed implicitly in fact by Hills and Szekely
(1969). Substituting these values into equations (2.43) and (2.44) now yields as correction

factor for the effect of injection and fog formation on rmass transfer:

(C—CP— Le - 1)(T- &) +

®c,f2= B ¢ (2.58)
— Le C_Lci —
BV
H (T- )1 —¢)
La(1 — ci) [clat+ Ec 1]
P,V i %E
. t
Blet 1 am g
oy ™= & at t i

The approximate solution can be apphied as both Hlat / v and Lev are large; I-Ilm/cp)V i
& : _

18000 K (H,,, = 6.38 10" J/kg, see Smithells (1976)) and 17 < L(—:(:p/cp)V = Le, < 33 (cp

depends on ti). In §2.5 we have geen that for moderate temperatures, b < 2500°C (ci <

0.86), the accuracy of the asymptotic solntion improves with larger Hlat /cp ¢ and Le .

For ¢; << 1 equation (2.58) is approximated hy:

H
Le (t, —t) + —adbc
i  Sgp
8, = - L (2.59)
e Le+ ¢ —2t 4F Y
i i~ ¢ dt
D ti

When Le = 1 is substituted this correction factor clearly corresponds with "Sh/Nn" {"sq.
(14)", in which the second bracket of the numerator should be placed after the last term) of

Hills and Szekely (1969). For ¢dF/dt(t=t,) 2 0 equation (2.59) further reduces to:



t. -t
o p=i & (2.60)

/iy ("eq. (17)" with & = 1) of Rosner (1967} when
ci"ldF/dt(ti) s F_l(ti)dF/dt(ti) v 3 [K]/T? (see equations (C.3) and (C.8)) is substituted.

which corresponds with "

The resnlting correction factors for evaporation are now calculated for interface
temperatures ranging from 1500°C up to 2500°C, and drawn in figure 2.4. In this figure
also the experimental data of Turkdogan and Mills (1984) and theoretical CSM predictions
of Turkdogan (1964) and Rosner (1967) are depicted, taken from Hills and Szekely (1969).

]
20
i3
Tatkdogan and Mills (1564)
15
ey (2.58)
Tutkdogan {1964}, Rosner (1967)
10
ey, {2.60)
&q, (2.58)
5
¢

1500 17006 1900 2100 2300 2500
Y o)

Figure 2.4 Mass tranafer correction factora for evaporation of nickel into helinm,

The figure shows the enhancement of the evaporation rates, @c g > 1, by fog formation in
wr ¥
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the film. Equations (2.60) clearly overestimates this enhancement becanse it does not
account for the effect of liberated latent heat on the temperature profile in the flm. The
principle difference between eguation (2.58) and equation (2.59) 15 caused by the allowance,
made in the former, for the reducing effect of injection on evaporation. The difference
between the two increases with increasing t; and ¢;, as might be expected. For t, = 2500°C
injection already causes » reduction of about 50 per cent, which will rise dramaticaliy when
the boiling temperature of nickel (¥ 2915°C) is approached (that is to say, ¢; approaches
unity). Equation (2.58), however, still overpredicts © o 2 owing to the agsumption of the
saturation condition. I the effect of supersaturation in the mixture were taken into

account, ©, o, would be further reduced.
LA
§2.8 Conclusions

The conventional film model issues from heat, mass and momentum transfer in a film next
to a wall. In this chapter it has been demonstrated with slope conditions (2.1) and (2.2) for
wall condensation and wall evaporation, respectively, that in & binary mixture a part of or
the entire film js supersaturated. On the basis of the saturation condition the existence and
magnitude of the fogging flm region have been determined and calenlated.

The solution of the governing non—linear basic equation of diffusion and energy in
the fog layer has been found both numerically and approximately with an asymptotic
analysis. Evaluating the heat and mass transfer tates proved the large influence of fog
formation. In partienlar for small vapour fractions, the effect of fog formation on the
contributions of latent and sensible heat trangfer is significant, as well as the amount of
produced fog. On the other hand, the mass transfer in & mixture with larpe vapour mass
fractions, diffusional latent heat tramsfer is the dominant mode in a condenmser or
evaporator, is hazdly not affected by fog formation. To all physical situations applies that

the total amount of transferred heat is nearly the same as for a film without fog formation.
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For large vapour fractions the temperature and vapour fraction in the film,
correlated by G(t), can be situated in the superheated region, even when the bulk is
saturated. This is due to the fact that for large vapour fractions and Le < 1 the curvature
of G(t) is such that it lies entirely in the superheated region and consequently, the classical
film model remains valid. The major role of Lev is onee more emphasized when ¥, which
should be positive in the fog layer, is considered. This condition is fulfilled for Lev » 1, but
not guaranteed for Le_ « 1. The computational examples in this chapter disclosed however
that K > 0 in all fog layers considered.

The here derived approximate solution has been compared for condensation in
varions air water-vapour mixtures with the complete numerical solution of the governing
equation in the fog layer. Numerons calculations indicate the reliability of this sclution to
condensation and evaporation, and applicability to most other vapours as well.

An alternative way of adequate describing heat and mass transfer in condensers and
evaporators, allowing fog formation in the film and/or in the bulk flow, has been discussed
in great detail. The recommended new procedure is illustrated by means of a flow chaxi. It
cotrects both the local transfer coefficients and direction of the bulk properties’ path in the
presence of both an induced velocity and fog formation (in the film and/or in the bulk of
the mixture).

In the previous section the approximate solution has been utilized to predict the
evaporation of nickel into helium, in particular its enbancement by fog formation and
reduction by the induced velocity. Comparing the results with those of previous
investigators, it was demonstrated that at higher interface femperatures and vapour
fractions the enhancement is significantly reduced by the injection effect. The investigation
further suggested that a combined consideration of the induced velocity and possible

supersaturation would result in a still better representation of the system examined.
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3. THE COMPOUND FOG FILM MODEL

§3.1 Introduction

The classical film model correction factors for the effect of suction and injection were
derived and applied in chapter 1 and extended to include the formation of fog in chapter 2.
This new film model provides correction factors which account for the effect of both an
induced velocity and fog formation. In chapter 2 the caloylaied results illustrated that for
small vapour mass fractions, implying in turn small induced velocities, the effect of fog
formation on heat and mass transfer is greatest. As this interaction between fog-related
heat and mass iramsfer is extremely interesting and the governing equations are
significantly simplified without imduced velocity, in this chapter the limiting case is
analyzed in which fog is formed in the flm but the vapour mass fraction is small.

Formation of fog in dilute vapour non—condensshles mixtures has been the subject
of numerous investigations in the past. In the iniroduction of chapter 2 the studies based
on the eritical saturation model {CSM) and on the saturation condition have already been
discussed. Studies of fog formation in dilute ome—dimensional systems, in combination with
the saturation condition, have been carried out by Hills and Szekely (1964, 1984) and Toor
(1971a, 1871b). The former investigators proceeded from saturated bulk properties and an
entirely saturated film. By the latter, employing the tangency condition, the existence of a
saturated vegion and its boundary with the superheated region were determined. All
presented theories, however, were limited to cases where Le = 1 (and 61. P EC) and not
brought within the scope of & general fog film model which can be applied to convective
heat and mass transfer.

Here then, a film of a binaty mixture with any Le value will be considered but

without induced velocity, this physical simplification being permissible when the vaponr
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mass fraction is sufficiently small. The error, introduced by omitting this velocity, will be
agsessed thoroughly by means of an asymptotic analysis.

The possible existence and magnitude of a fog layer in the film will be determined
and explained praphically. The simplified governing equations of heat and mass transfer in
the film are treated analytically and compact and usefnl correction factors are derived.
These correction factors for heat and mass transfer give a clear insight into the influence of
the diverse parameters on fog formation.

The film model approach to fog formation is then applied to closed channel flow and
analytical expressions for the bulk vaponr mass fraction and bulk temperature variation in
the channel derived. Since attention ig focussed only on the interaction betwgen the energy
and diffusion equations when fog is formed (2nd not on the effect and presence of the
induced velocity in these equations), the analysis presented here will not yield a cotrection
fot the friction coefficient, as this is affected only by suction or injection.

Furthermore, it will be demonstrated that the derived fog correction factors can be
adapted easily to heat and masa transfer in the presence of suction ot injection, In this way
a compound fog Alm model is derived which is based on relatively simple equations, and
can be applied to heat and mass transfer in the presence of both fog formation and an
induced velocity. Finally, the fog film medel is compared extensively with theoretical and
experimental results of two—dimensional free and forced convective heat and mass transfer

analyses, performed by previous investigators.

£3.2 Asymptotic analysis of the film for a negligible induced velocity (NIV)

The present analysis is based om:
— the saturation condition, and
—no induced velocity (NIV).

The first assumnption has already been discussed in the previous chapter. The etror
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introduced by not taking the induced velocity into account is agsessed with the help of an
asymptotic analysis of equations (1.6) and (1.10) for small vapour mass fractions. The
underlying theory of the applied techniques can be found in the standard work of Van Dyke
(197s).

When:

(=0 -
elzc‘i};_—)&i . (8.1}

1
tends to zero, equation (1.6) can be approximated by:

e —

%_—2=§;(1 I (3.2

and equation (1.10) by:

i hogly (8.3)
W=t g Le - '

In equation (3.1) the entrance vapour mass fraction cb(x=0) figures since this is the most
extreme condition. In a chennel the local bulk vapour mass fraction is always situated
between the entry value and the vapour fraction af the wall ¢;- The magnitude of Lev,
appearing in equations (1.10) and (3.3), is nsually of order wnity, Equations {3.2) and (3.3)
indieate that the vapour fraction and temperature profiles tend to linear fanciions of y as
J¢; | becomes small, which is for instance the case for mixtnres with dilute vapour.

The golutions of the diffusion equation (1.2) and the energy equation (1.7) are
exactly straight lines when the indnced velocity (1.3) is not included in these equations.

The error magritude of omitting the induced velodty from both basic equations i5 thus
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governed by the second term on the xight hand sides of equations (3.2) and (3.3). When the
vapour fractions ¢; and Chp and the modified Lewis numbers Le_ listed in tables 2.1 or 2.3
are considered, it is evident that the magnitude of € and hence the introduced error, is
very emall. In particular when one realizes that the largest tabulated difference between
bulk and interface properties is so large that it will practically never be fournd in common
gituations.

Since the temperature and vapour mass fraction profiles tend to a linear dependence
on y for amall vapour mass fractions, the relation between ¢ and ¢ will be linear as well,
The relation between ¢ and t in a film with induced velocity, represented by equation
(1.50), is furthermore linear if Le_ is equal to mity, regardless of the magnitnde of ¢,. G()

therefore tends to a linear function of t if both € and €, Bre close to zero, where:
£, = Le, —1 . (3.4)

Thus equation {1.50) can be asymptotically expanded for small ¢, and ¢, as:
t —
o= G(t) = ¢ + (o~ c)]r [ } (1+0fe, &) (81t (35)

Equations (3.2), (3.8) and (3.5) indicate the small influence of the induced velocity for
small e Accordingly, in this chapter the induced velocity is not considered and the first
order approximations of equations (1.6) and (1.50), and zerc--order approximation of
equation (1.10) (which co:responci with equations (3.2), (8.5) and (3.3), respectively, with
g =0 substituted) for small € will be employed from now on.

To verify whether fog is formed, equation (3.5), with ¢; set equal to zero, is

employed. Substituting equation (3.5) into slope condition (2.1) for suction yields:
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dF| _dG| % " &%
< = , (8.6)
ar t dt " tb — tiFE

and applying equation (3.5) in equation (2.2) for injection yields:

aF) Jaal _% T G% 1)
ﬁti a-J‘-tj.l 55

The possible intersection of the saturation line, implying the formation of fog, is detected
with equations (3.6) and (3.7).

When these equations predict formation of fog in the film, see figure 8.1, a
superheaied and & saturated region are distinguished. In 0 € y < 6& the film is saturated,
and in Ea tyt é‘c ar 6t the film is superheated. The fog film th;ckness 'Sa is yet to be
determined. At the boundary of the superheated snd saturated regions the temperatnre and
vapour fraction are defined by equations (2.3) and (2.4), respectively. In the superheated

region, defining:

= C
=t (3.8)

the zero—order approximation for small 153[ of the temperature, represented by equation

(2.7), reads:

L —46) -t (y=14)
(5, 5,)

t(y) = (B,¢v¢8) - (39)

The first order approximation for small |c3i of the vaponr fraction, represemted by

equation (2.6), in the superheated region. reads:
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o (v — 8,) —¢, (v = 6)
ofy) = 2 T (6,¢y¢8) - (310)

Eliminating v from equations (3.9) and (3.10) results in:

t —t, 4 b,
¢=G(4) = bef—u—J—(Lb—ccha (t,¢6€t) - (311

a
Relation (3.11) is linear since both ¢ and t depend linearly on y in the superheated region.
Fquation (3.11) is in fact the first order approximation of equation (2.8) for small |€g]-

As 1o solution in closed form for the fog layer’s governing equations was derived in
chapter 2, it is not possible to derive approximate expressions for small |eg| from them.
Accordingly, the basic equations are firet linearized and then solved. The linearized

diffusion equation in the fog layer (equation {A.11), in the limit of small ¢) reads:

2
[ d—‘_’ =K , (3.12)
dy?
with associated boundary conditions (1.4) and (2.4). The energy equation in the fog layer,

without induced velocity reads:
ko _m K, (3.13)
dy?
with appropriate boundary conditions (1.8) and (2.3). In the fog layer, 0 £ y ¢ é,, and on
the borders y = 0 and y = 53,’ the vapour fraction is related to the temperature by the

saturation line (2.5). The amount. of formed fog K is eliminated from equations (3.12) and
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(8.13), the resuiting equation is integrated twice with respect to v, and boundary
conditions (1.4), (1.8), (2.3) and {2.4) are applied, yiclding:

lat

H H.,.y (e.—¢) + &b
: oy) + Le 4(y). = éa.t a i ia
P

A (0¢ycé)
(3.14)
Ley (b= t;) + 4,8,

&

this equation is an implicit solution of t as a function of y, because ¢ is preseribed by

equation (2.5), in the range 3 <% &1, a8 a function of t.

NIV fog film model
Vapour
s ame— o glasgical film modal

{raction

Temperature

Figure 3.1 Determination of the boundary (i " ca.) of the superheated and saturated

regions for two (1, ¢), &, = 8,
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On the border of the superheated and saturated region the vapour fraction and iemperature
profiles obey the gradient—continuity conditions (2.10) and (2.9), respectively. Combining
these eguations to eliminate y, and substituting equations (3.11) and (2.5} yields:

dF Gl %~ %% — &

T, “T, THTRLL =8 (3.15)
& a

A C a

Equation (3.15) prescribes mathematically that (taﬁ ca) is situated on the saturation line in
such a way that the straight line (3.11) of the superheated region is tangent in (1 o ¢y) to
the saturation Line (2.5). Thus (t,, ¢,) coincide with (t o) when the bulk is saturated,
implying that the entire film is saturated when the bulk is saturated. This feature of the
filen. for small vapour mass fractions (or for Le, = 1) is explained in appendix B. In figure
3.1 the determination of ( ar Ca.) is represented graphically for the cases of 3 saturated and
a superheated mixture.

The dimensionless fog layer thickness follows from equation (2.9), combined with
equations (3.9), {3.14), (3.15) and the firei crder approximation of equation (2.17) for small
le| and feq]: '

el (3.16)

ab:

2 : (3.17)
H P
Le (b= 1) + —2% (o ci)z:-“:
P
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Equation (3.16) is based on the assumption of a undisturbed (linear) vaponr profile in the
saturated part of the film; it is introduced to retain in the analysis the option of unequal
thermal and diffusional film thicknesses. In the previons chapter it was shown that the
introduced error can be neglected for practical situations, see jables 2.1 and 2.3,

The correction factor for transferred heat is now obtained by comparing the heat
iransfer with fog formation with the heat tramsfer without fog formation, resulting in
expresgion (2.42). Differentiating (3.14) with respect to y, applying the saturation
condition (2.5), and substituting (3.17) into equation (2.42) results, according to the NIV

fog film model, in the following thermal correction factor:

- Hlat 1 % 49
oy le H= G E
Oy g = (3.18)
Hiat 1 ap

1+ <, Eﬁti

The NIV correction féctor for mass transfer is obtained by application of eqnations {2.27)

and (3.18):

H
lag 1
1+ [ ¢ Le T =t 7,
0 o= i
o H -1
1+ lat 1 dF
o Te dt t;

{3.19)

The correction factors {3.18) and (3.19) are very compact and useful results, since they
follow directly from the local bulk conditions (tb, cb), the interface conditions (ti= ci), and
the saturation line F(t). To determine the correction factors the iterative calelation of (ta,

c,) using equation (3.15), and of the dimensionless fog film thickness (3.16), are not
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TIECEs5ary.

Moreover, the analytical expressions for the correction factors clarify the influence
of the diverse parameters and numerical results listed in tables 2.1 and 2.3. When fog
condition (3.6) for condensation 2nd equation (3.7) for evaporation are considersd, one can
readily see that @t,fﬂ ia larger and smaller than unity for condensation and evaporation,
respectively. A similar consideration of equation (3.19), in combination with equations
(3.6) and (3.7), vields that G)c,ﬂ% is smaller and larger than unity for condensation and

evaporation, respectively.

Vapour
mass

fraction

Tamperature

Figure 3.2 Graphical representation of the effect of fog formation, 6t =0,

Furthermore, the thermal correction factor deviates more, and the diffusion cotrection

factor less, from umity for larger Hla’s/ cPLa. When it i8 born in mind thet H, /cPLe =
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Hlat/cp,vLev’ this feature of Et,f and @c,f ie indeed confirmed by the results listed in
tables 2.1 and 2.3, In figure 3.2 features of 91;,£3 and @c,f3 are illusirated graphically for
evaporation and condensation; ¢an{p,) corresponds to dF/dt in t, and fen(ps) to (ob—
ci)/ (tb-— ti). Figure 3.2 also indicates that the the correction factor differs most from unity
when the bulk properties (tb, cb) are situated on the saturation line F(t), i.e. when the
entire film is saturated.

Toor (1971a) derived analyticelly for 1 ~ ;¥ 1, Le =1and 6 = §, that the total
(latent and sensible) heat traneferred at the wall is not affecied by fog formation. A glance
at equations (1.15)+1.17), (1.21){1.23), (2.31), (2.42), (2.44), (3.28) and (3.19) indicates
that this feature of the film ig also found when Le # 1 and 6t # 6c,

The dimensionless amount of fog formed (2.30) in the fog layer follows from
equations (2.5}, (2.28), (3.13), (1.23), (3.14) and (3.18):

H
lat 1 4F
L LEaTlti

Mg =0, |1 (3.20)

H
lat 1 dF
L+ = 1 H'?lta

P
This expression and equation (3.18) indicate the augmentation of the NIV dimensionless
fog formation with an increase in the difference botween interface properties (ti, ci) and

boundary properties (ta’ ca), as well when Hlat/c pLe is enlarged.
§3.3 Application of the NIV fog filmn model to channel flow
The application of the NIV fog model to the laminar or turbulent flow of a binary mixture

through a channel is now disenssed in detail. The governing equations for the vapour

fraction and temperature alteration in the charmel are derived for three possible cases: no
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fog formed; fog formed in the film but not in the bulk since the mean mixed condition
corresponds to superheat: fog formed both in the film and in the bulk, whick is saturated.
Solutions in closed form will be provided for all three cases, It will be demonstrated that

the applied NTV fog film model exhibiis interesting features for Le equal to unity.
Transfer of heat and mass without fog formation

Congider the flow of a binary mixture through a channel of any given ghape and in which
there is a transfer of heat and mass from gas to a wall, and the vapour mass fraction is
small, 8o that || i5 close to zero. When equations (3.6) and (3.7) predict no formation of
fog, the conventional film model ig applicable, For small transfer rates (¢t & 0 and c{:c v ()
the classical correction factors @, and @ tend to unity: for small [e| the zero—order

approximation of the differential energy balance (1.39) reads:

dat —4h
— B (-t} (8.21)
dx

= - (
o, Dy (P} (x=0)
with az boundaty condition the mean mixed temperature at the beginning of the channel:
Hx=0) = t, . (3.22)

As the interface properties (f.i, ¢;) are assumed to be constant in. the gas channel, equation

(3.21) can be integrated and boundary condition (3.22) applied, yielding:

— 4k f
¢ D, (#8)(x=0)

Wx) =t + (,—t) e P (3.23)



The first order approximation for small |¢; | of mass balance (1.36) reads:

dc - 48, _
& .

with as bulk vapour mass fraction at the enirance of the channel:
F=0)=¢c . (3.25)

Solving equation (3.24) analytically with application of boundary comdition (3.25)

produces:

- 4g x

m
Tx) = + (e ) @ plAt) (x=0)

(3.26)
Equations {3.23) and (38.26) give the bulk properties as a function of the coordinate in the
direction of the flow, when ihe entire flow is superheated. These equations show that the
mixed mean properties in the thannel will lie between the interface values and entry
values, which would be expected.

To determine the path of the bulk properiies, the coordinate x is eliminated from
equations (3.23) and (3.26), and equations {1.17), (1.28), (1.34) and (1.40) are substituted,
yielding:

I

== - (3.27)
& 4T LeNuf - t;
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This expression reveals that G(f) is a monotonically increasing function of . Equation
(3.27) furthermore illustrates that for Le equnal to unity, and hence also the applicability of
equation (1.48), the mean mixed properties follow the relation between ¢ ant t in the
superheated film represented by equation (3.5). The classical —no fog— film model exhibits
the feature of equality (1.52) as well, a8 was proved in §1.5. So, the fact that for the special

cage of small | ell the sarne behaviour is found, is in fact to be expected.

Vapouw
mas

fraction

——
a0, g 1
|

Temperatnro

Figure 3.3 Path of bulk properties in the caze of no fog formation.

The variables ¢ and ¥ in equation (3.27) are peparated and integrated. Applying boundary
conditions (3.22) and (3.25) then yields:



czﬂ(f):ci+(cin—ci) L .
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(3.28)

For 8h/Nule > 1 and condensation or Sh/NuLe < 1 and evaporation, T(T) proves to be a

concave curve. For Sh/NuLe « 1 and condensation or Sh/NulLe > 1 and evaporation, G(T)

is & convex eurve. For Sh/NuLe = 1, G(1) is a straight line, both for condensation or

evaporation. These properties follow from the second derivative of G(T) with respeet to .

As schemaiically depicted in figure 3.3, the bulk properties may move to intersect

the saturation line, before which the film will become partially saturated. The governing

equations of this physical situation are discussed below.

Heat and mass transfer with fog formation in the film but not in the bulk

When only a part of the film is saturated (as predicted by equations (3.6} or (3.7)) the bulk

(which is to say: mean mixed) situation may eorrespond to superheat. The differential

energy balance then reads:

dt —4h
— b= &y
dx ’ CPDh(P“)(x=0) !

?

with boundary condition (3.22) and the differential vapour fraction balance:

de -dg, _
PR S C=g) ,
a o D () (xm0)

with equation (3.25) as appropriate boundary condition.

(3.20)

(3.30)



102

F(t)

NIV fog film model

Vapout s —— —  classical (ilm model

snans

fraction

v Y v T

Femperature

Figure 3.4 Path of bulk properties in the case of wall condensation and fog

formation, Le = 1.

The differential equations (3.28) and (3.30) are coupled because in the correction factors
(3.18) and (3.19) T and T appear, Combining squation (3.28) and (3.30) to eliminate x and
substitution of equations (1.17), (1.23) and (2.27) yields:

de dG 1 dF

= : (3.31)
dt 4T Ledt|t

In order to express ¢ as a function of T, equation (3.31) is integrated with respect to T, and

equations (3.22) and (3.25) are applied, yielding:
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= G(‘) Gy F (1) fE . (3.32)

Eguation (3.32) is substituted into equation (3.18) to eliminate T, and the result is
subsiituted in equation (3.28). The variables  and x in the regulting differential equation
are separated and equations (1.34) and (1.40) inserted, producing:

H
lat 1 dF
ok

t»—t+—1a'tL—N—(cm g+ (T-t) & &)
1

(3.33)

—4h,
—.&...——de

& D) (x=0)

Integrating (3.33) partially and applying boundary condition (3.22) yields:

H
lat Sh = 1 dF
i ¢ oNa (6ip= ¢ + (6 ~t) Te HTIti)

1

H
lat Sh
1Jin‘ Sl cp (m cl)
(3.34)
H

“lat Sh
1+ —= )’* |

c =~ 4h

p "

chh(F’E) (x=0)

1+H1a.t 1 dF
!:p mﬂti

Equation (3.34) preseribes explicitly the temperatyre (x) of the gas in the channel when
fog is formed in the film and the bulk is still superheated. Substitution of t{(x) according to
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equation (3.34) into equation (3.32) yields the local bulk vapour mass fraction in the
channel.

Equation (3.31) indicates that, when fog is formed in a part of the flow and Le = ],
the bulk properties shift in the direction of the saturation curve paralle! to the line tangent
to F(t) in (t;, ¢;), as illustrated in figure 3.4. ‘I'he shape of thiz path, which is a straight
Line, does however not depend on the magnitude of Sh/NuLe.

The bulk properties follow the path until the saturation curve is reached. The
behaviour of the mixture once the bulk is saturated is discussed below, When the heat and
mass transfer in a channel is described without heeding the intersection of saturation line
and formation of fog, the bulk properties (T, T) may enter the supersaturated region
following G(I). This phenomenon is deseribed by equation (3.28) and illustrated in figures
3.3 and 3.4.

Heat and mass transfer with fog formation in the bulk

The last physical situation concerns a saturated bulk flow in which fog is formed. The
entire film is then also saturated, thus (t,, ¢ ) coincide with (%, c). This property of the
NIV analysis is mathematically prescribed by equation (3.15) and is illuatrated in figure
3.1, The conditions when fog remains in the gas flow are governed by equations {2.50) ot
(2.51), in which equation (3.31) is substituted. The created bulk fog keeps the bulk
properties on the saturation ling; ¢ = F(T). The differential energy balance in the case of

fogged bulk flow reads:

h fg Bl
= —4E“"_[@t,f3 (f_ti)_ﬂﬁ_ﬁ] , (3.35)

by
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with belonging boundary condition (3.22). The differential vapour fraction balance is given

as:

[@ g+ I:Tfj] , (3.36)

de -4g
dx Dy (pi) (x=0)

with boundary condition (3.25). The quantity of fog is such that equation (2.55) is fulfilled,
This mesns mathematically that the mixture follows the saturation line while flowing
through the channel. With equations (1.17), (1.23), (2.27), (2.30), (2.55), {3.25) and (3.36)

the dimensionless quantity of fog in the bulk flow s obtained as:

1+ lat 1 4F
- e Te dtt;
1+ lat dF J

cp av I

The thermal NIV correction factor figuring in this equation is found in equation (3.18). For
Le =1 the amount of bulk fog, given by equation (3.37), is identical to that created in the
flm, given by equation (3.20).

The differentisl equations (3.35) and (3.36) are coupled because ¢ = F(t). Hence,
only i(x) has to be determined. Equation (3.37), with application of equation (2.30), is

substituted in eguation (3.35):

_ L 4 Hat 1 dF
di - 4h B ¥ T L dit.
— =8, B (F-t,) b H (3.38)
dx chh(pu)(xz'J) - Hy i 4F
Cp at T
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By substitution of equations (1.34) and (1.40) into equation (3.18), substitution of the

result in equation (3.38), and separation of the variables t and x, one finds:

L 1 Dlat dF|
c. di|t _ ~ 4h
P dt = ( f;( dx . (3.39)
H ¢ D (pu)(x=0}
lat Sh - P h
Poti 7 Fale €9

The left hand side of this equation can be integrated analytically with respect to T when the
product Sh/NulLe equals unity (which implies Le = 1 for most practical cases gince Sh/Nu
v LeP, where 0 ¢ p < 1, e.g see equation (1.55)). Setting this product equal fo unity,
equation (3.39) is partially integrated and coupled boundary conditions (3.22) and (3.25)
applied:

"4hf

T lat 1 -
i(x) —t, + — (c(x) —c.) TV e
i €y Le i :ecPDh(pu)(x 0) (3.40)
H
lat 1
Yin ~H * [ Te (Gn ~ &)

Equation (3.40) gives the temperature ¥(x) implicitly as a function of x, because ¢(x} =
P(¥(x)). The bulk temperature and vapour mass fraction follew the saturation line in the

direction of (t;, ¢;) while flowing through the channel, see figure 3.4
§3.4 Results of the NIV fog film model and introduction of componnd fog film model

The regults of the fog model here derived will be calenlated for the underlying conditions of
tables 2.1-24 (6t = ﬁc): cne ghould keep in mind that Hla.t/che is identical to

Hy,. /e, [Le_. On the basis of the here derived NIV fog correction factors and classical film

Dvov
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model correction factors, ¢compounded correction factors are introduced which account for

both fog formation and the presence of an induced velocity. To determipe fog formation use

has been made of slope condition (2.1).

LeV

ty, = 30°C 0.50
o, = 0.0264 0.75
1.00

o
t, = 60°C 0.50

&, = 0.1318 075

1.00
1.25

Oas 9 n®/O O.ps

1.222
1.192
1.168
1.161

2.538
2,328
2.169
2.044

1.215
1.189
1.169

1,152

2.387
2.281
2.169
2.089

0.922
0.899
0.882
0.868

0.781
0.717
0.667
0.629

My,

0.392
0.351
0.317

0.238

2.065
1.902
1.753

1.626

Table 3.1 Results of the NIV and compound fog film models for (ti, ci) = (20°C,

0.0144).

The mass transfer correction factor @ .43 sted in table 3.1 agrees extremely well with the

ratio of the overall correction factor (taking account both of fog formation and induced

velocity) to the classical correction factor (taking account of an induvced velocity, only),

®. /0, in table 2.1 and @ ,/® in tahle 2.3. This implies that the overal correstion
c,fl/ e c,f2/ ¥e

factor for fog formation and induced velodity can be approximated by multiplication of the

correction factor of the NIV fog film model with the classical film model correction factor:
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@c,f4 = @c @c,f3 (3.41)
Thus the introduced correction factor @ et is compounded from the conventional
¥
correction factor Gc which accounts for suction or injection, and an independent NIV

correction factor @, g Which accounts for fog formation only.
¥

Lev ®t,i‘3 Gt,ﬂ!@c/ ®t Ec,fS Mf4
tb = 97.63°C 0.80 1.097 1.017 0.998 0.025
¢, = 0.875 0.90 1.087 1.060 0.998 0.121
1.00 1.097 1.097 0.998 0.198
1.10 1.096 1.128 0.998 0.261

i, =99.90°C 0.80 1.000 1.000 1.000 0.000
ey = 0.995 0.90 1.189 1.077 0.997 0.345
1.00 1.188 1.188 0.996 0.778
1.10 1.188 1.295 0.996 1.133

Table 3.2 Results of the NIV and compound fog film models for (t;, ¢} = (94.81°C,
0.75).

In table 3.2 the corresponding results are presented for the physical situations of tables 2.2
or 2.4. A comparison of the values in the tables again indicates the good agreement of the
comepounded correction factor with those of more profound analyses. Even for the typical
condenger conditions listed in table 3.2, involving a significant induced velocity, the

accuracy of the compounded correction factor is astonishing good.
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On the other hand, the thermal correction factor et,iB’ listed in table 3.2, does not
agree with the quotient of the thermal fog film model cortection factor and the Ackermann
correction factor, @t,ﬂ /@, and et,ﬂ/@t in tables 2.2 and 2.4, respectively. In other words,
multiplying the thermal NIV fog correction factor derived here by the Ackermann
correction factor yields no satisfactory compound thermal correction factor. In general, all
thermal and diffusional correction factors of the fog film models obey basic equation (2.27),
thus the heurstically congiructed correction factors © o and 9t,f4 have to meet these
requirements as well. As G)c,ﬁs and @t,f3 fulfill equation (2.27), the thermal correction
factor et,£3 has to be multiplied by the same factor as © o8 that is to say G)c:

Op =0 O3 (3.42)
This thermal fog correction factor has been divided by the Ackermann correction factor G)t
and the result listed in tables 3.1 and 3.2. These tables reveal that the constructed fog
thermal correction factor (3.42) agrees well when it is compared with the results listed in
tahles 2.1-2.4 Moreover, extensive caleulations have been carried out with numerous other
physical conditions, Le and Hlatfcp,v‘ All calculations proved that the accuracy is of the
same order as the examples treated here. This implies @ o.f and @t, g BT€ good
approximations for the fog film model correction factors, acconnting for both the influence
of fog and the indunced velocity.

The compound fog film model ia applied in the same way to closed channel flow as
the fog film models tréated in chapter 2. The procedure is described in §2.6 and figure 2.2,
and illustrated here by figure 3.5, The main difference iz that, to determine ®t,f4 and
9(:,1'4’ the boundary properties (ta, ca) do not have to be calculated iteratively. This
esgential simplification is a major advantage since it reduces the complexity of the fog

model and the needed computational time.
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START

t(x), c(x)

!

{t;, &) with © (eq. (1.13Y)
and @, (eq. (1.25))

Tl
x=0

(t,, ¢;) with

G)c,le and @t,ﬂl

€ + dc with eq. (1.36)
1 + dc with eq. (1.39)

N

x +dx =end
of channel
Y

END

M, 4 with eq. {2.56)

1
T + dc with eq. (2.53)
t + di with eq. (2.54)

Figuze 3.5 Flow chart of the applied componnd fog film model.

Fyrthermore, the forms of ©,, @, ¢ and ©, oo as such are far less complex than the
3 ¥
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expressions derived in the previoue chapter and henee are much faster to determing,

In tables 3.1 and 2.2 the amount of formed hulk fog, according to the compound fog
film model derived here, is listed. Calculating equation (2.56) to determime the
dimensionless bulk fog, Le has again be set equal to unity and equality (1-48) substituted.
The calculated rates agree well with the corresponding omes listed in tables 2.1-24, once

more proving the reliability of the compound fog film model expressions.
§3.5 Comparison of the fog film model with convective models and experiments

In thie seciion the non—convective fog film model is compared with comprehensive models
and experiments of previous investigators. These two~dimensional models concern laminar
free and forced convective heat and mass transfer of dilute water—vapour air mixtures to a

wall, the presence of fog being described by the satnration condition.
Free convective heat and mass transfer

Koch (1986) investigated the free convective boundary layer flow along a vertical
eryosurface with wall condensation. To this end the governing equations of continuity,
momentum, energy, molecular diffusion, and particle diffusion were derived and solved
numerically, In the thesis it was. demonstrated that the thermophoresia of particles is a
significant mode of mass transfer when the interface temperature is below about — 10°C; it
even dominates molecular mass transfer if yo< - 60°C., The theoretical model was
furthermore found in good agreement with performed condensation experiments on a plate
of 1 m height. In table 3.3 two examples are Ligted, which will be compared with the
predictions of the fog film model.

The total mean mass flux to the wall consists of two parts, namely mass transfer by

particle and by molecular diffusion. As in this thesis only the effect of fog formation on the
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(molecylar) diffusion and emergy equations i examined, in table 3.3 also the purely
molecular diffusion part, denoted as a, is included {taken from "Bild 5.20"), as well as the
diffusion mass transfer without fog formation. Dividing both diffusion mass transfer rates
then produces the correction factors for mase transfer. The diffusion correction factor
obtained in this way can be compared with the predictions of the analysis presented here,
since thermophoresis does not affect the coupled diffusion and energy equation.
Accordingly, © o3 see equation (3.19), is determined for the corresponding physical
situations of Koch (1986): Le = 0.85, Hlat”cp = 9490 K. For free convection Sh/Nu (=

6,/ 6.) is approximated by equation (1.55).

experimental  theoretical nofog  theoretical eq.(3.19)
o, g lg/m] m fkg/m’s] a, m [ke/w’] am,  /m Qc,f&
—) 5
03F(t,) 108100 112107 063 1511070 046 0.43
06 (1)) 1721070 163 105 g5z 3061070 026 0.2
Table 3.3 Free convective mass transfer of water—vapour air mixtures, i, = 20°C

(F(ty,) = 0.0144), to a vertical wall, t; = — 30°C and ¢, = F(t;) = 0.00003.

To compose the saturation ling (C.7), the Rankine—Kirchhoff equation is furthermore used
for the water—vapour pressure {o = 2485.938, § = 48.745 and « = 6825.112, see equations
(C.1) and (C.3)), and Py=1 bar. This liqmid—water vapour pressure is employed, though
the fog layer near the wall is below the solidification. temperature of water. It was stated
and employed by Koch (1086) that the droplets are in a metagtable liquid state and hence
the mentioned saturation pressure of liquid water can be used. At the solid surface the
saturation pressure of ice, of course, prevails, but the distinction with the water pressure is

minor there and moreover, c;

| << oy In table 3.3 the calculated @c!m for the two
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examined cases are listed.

The computed diffusion correction factors in table 3.3 show that the fog film model
mass transfer predictions are in good agreement; the deviation of G)c,f?: from unity is
predicted within 6 %. One should also realize that the results of Koch (1986) in table 3.3
are based on the combined analysis of particle and molecular diffusion, and that B, (the
ratio of the molecular diffusion mass flux to the total mass flux at the surface) is read off
graphically. In order to obtain data which can be compared more acenrately with the fog
film model, Koch and Straub (1990) utilized the numerical model to predict the free
convective mass tranefer {0 a surface with t = 0°c, by, = 40°C, and o, =03 F(tb) OF Gy =
0.6 F(tb), thus excluding 2 relevant effect of thermophoresis.

For ¢ = 0.3 F(t},) the entire film is superheated, this follows from slope condition
(3.6). The same equation is in fact used by Koch (1986) and Koch and Straub (1990),
yielding the same conclusion of course, For ¢, = 0.6 F(tb) fog formation takes place in the
mixture. Numerical calculations have been carried out with fog formation and

thermophoresis suppressed, thermophoresis suppressed only, and with the complete model.

no fog fog ratio  eq. (3.18)
x[m] q[W/mi q [W/m7 @)t,f ®t,f3
0.06 213.0 300.9 1.41 1.47
0.5 8.7 - 169.2 142 1.47
1 99.70 142.5 1.43 1.47

Table 3.4 Free convective heat transfer of water—vapour air mixtures, tb = 40°C

and ¢, = 0.6 F(t, ) (F(t,) = 0.0471), to a vertical wall, t, = 0°C and ¢; = 0.00381.

The computations revealed that the solutions for thermophoresis included and suppressed

are practically identical, implying that thermophoresis is indeed a negligible phenomenon
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for the interface and buik conditions considered. Some determined heat fluxes to the wall
are summarized in table 3.4, while in table 3.5 the mass fluxes are listed.

One ¢an teadily see that the transfer rates depend on the coordinate x, which
constitutes the distance from the upper end of the vertical plate. The tables also indicate
that the ratio of fog and no fog rates is nearly uniform, thus independent of the level of
heat and mass transfer, This aspect of the effect of fog formation ia in gualitative accord
with the film model approach, since the resulting correction factors only depend on
interface and bulk conditions as well, The congtant local transfer rates ratios furthermore
imply that the total (and mean) heat and mass transfer fog/no fog ratios will have the

same value as well. This might be the reaton why the overall agreement in table 3.3 is 50

good.
no fog fog ratio  eq. (3.19)
- 2, hy 2,
x[m] mkg/m?] m[kg/m] @c,f @)c,ﬁ,‘
005 1801107% 10710 o073 0.71
05 ol 0ss9 10t o2 0.71
1 oes2107t odse10t o 0.71

Table 3.5 Free convective mass transfer of water—vapour air mixtures, t, = 40°C

and ¢, = 0.6 F(ty} (F(t,) = 0.0471), to a vertical wall, t; = 0°C and ¢; = 0.00381.

In tables 3.4 and 3.5 the NIV correction factors for fog formation are also included, in
which Le = 0.86 and H, at /cp = 2413 K have heen substituted. The computed correction
factors illnstrate the reasonable agreement between the solution of the comprehensive free
convertive boundary layer equations, and thoge of the basic fog film model. The deviation
of the heat transfer ratios from unity agree within 11 %, whereas the mass transfer ratios

agree within 7 %.
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Forced convective heat and mass transfer

Forced convective laweinar flow between parallel plates (in the diffusionsl and thermal
entrance Tegion) with wall condensation of various dilute water—vapour in air has been
invesiigated theoretically and experimentally by Hayashi et af. {1981). The governing
equations of continuity, diffusion and evergy were derived, solved nnmerically and found in
good agreement with performed experiments. On the bagig of the saturation condition and
a consideration of the vapour fraction and temperature profiles Hayashi ef af (1981)

detived the following condition for fog formation:

— ¢
p=L‘,mL}& . (3.43)

t, — & dF Sk

E ]
which is identical to the fog film model ¢ondition (3.6) (p was referred to as "1/T ©). It

was furthermore derived that to the considered entrance region applies:

LT et =105 | (3.44)

as Le = 0.875 for the studied mixtures. The theoretical and experimental results indicated
that, et,f and @ of {zeferred to as "Nu/Nu," and "Sh/Sh,", respectively) depend more on p
thar on the local transfer rate (governed by the dimensionless distance from the entrance,
referred to as: "Gzt” and "Gzc"). This observation is in qualitative accord with the
principle of the fop film model,

In order to compare the results of Hayashi ef ol (1981) quantitatively with the
predictions of the fog film model, correction factors et,ﬁ and @ o i3 represented by

equations (3.18) and (3.19}, are determined for the process concerned.
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Figure 3.6 Effect of fog formation on forced convective heat transfer from a

water—vapour air mixture 0 a wall in the presence of wall condensation.

With equation (3.43) equation (3.18) is therefore rewritten as:

H

lat Sh 4dF
t+ ¢, LeNu t|ti P
O = , (3.45)

H
lat 1 dF
P 'LEHT'ti

and equation {3.19) as:
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_ Nul
O3 = Oy 13 P (3.46)

As relevant data in equations (3.45) and (3.46) are now substituted the afore—said values of
Le and Nu/Sh, ang = 3°c, Hlat/cp = 2500 K. In equation (3.45) the first derivative of
the water—vapour air saturation Hne is employed, derived in appendix C. In figures 3.6 and
4.7 the experimental data and theoretical results of Hayashi ef gl {1981) are depicted
(which were also based on o= 3°C), as well the computational results of equations

(3.45) and (3.48).

12
- o
°
10 oy A
a% o
@c.f
0.5 4 o expzrimenta
T YGr,m " Hapashi et al (1981)
———— "Glc - TO4"
— ==
€q. (3.46)
2
— — 4=07
0
p 175 . s

Figure 3.7 Effect of fog formation on forced comvective mass tramsfer from a

water—vapour air mixture to a wall in the presence of wall condensation.
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Both fizures iltustrate the excellent agreement of the NIV fog film model with the
theoretical and experimental results concerned. Some experimental results in figure 3.6,
however, are typically gituated above the theoretical predictions. These exceptions, though
ihe deviations are modest, can be attributed to the variation in wall temperature during
the experiments; 1, ranged from — 3°C up to 0°C. Hence, equations (3.45) and (3.46) are
also evaluated with t, = 0°C and all other values unchanged; the obtained results are also
depicted in figures 3.6 and 3.7. One can see in fignre 3.7 that the effect of 2 higher t; is
minot, while in figure 3.6 the line pertaining to t, = 0°C hat a steeper slope and is indeed

in better agreement with some experimental data.

In this section the predictions of the NIV fog film model have been compared with those of
convective and hence more comprehensive studies. This important comparison justifies the
film model approach to fog formation, since it agrees with & deviation of typically 10 %. In
chapter 1 it has been discussed and demonstrated that the eonventional film model allows
for the induced velocity with a similar accuracy, which is well acceptable for enginecring
end purposes. It is noteworthy that if the induced velocity were included in the analyses of
Koch (1986) and Hayashi et al (1981), the effect of fog formation on iransfer Tates (and
related correction factors) would be the same. In §3.4 we have seen namely that both for
fog and no fog formation the heat and mass transfer is cnhanced equally by the

condensation—induced velocity.
§3.6 Conclusions

In this chapter a film of a binary mixture has been examined in which there is a transfer of
heat and mass. In this film the induced velodity has been assumed absent. The error
imtroduced by leaving this velocity out of consideration has been assessed thoroughly by

means of an asymptotic analysis.
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In the film with no induced velocity (NIV) fog is allowed to take place. First, 2
complete analysis has been given, on the basis of the saturation condition, of the presence
and extent of & fog layer and a superheated layer. The governing equations of both regions
have been derived, solved, and analytical expressions for the heat and mass transfer have
been derived. On the hasis of these expressions compact NIV filmn model correction factors
have been introduced, and the influence of the diverse parameters discnased.

Subsequently, the simple NIV fog film model correction factors have applied to the
flow of a mixture, with a small vapour mass fraction, through a channel. Three possible
physical cases have been examined, namely a superheated flow without fog formation, a
superheated bulk flow with fog formation in the film, and a saturated bulk flow with fog
formation. For all three cases solutions in closed form have been obtained, describing and
illustrating the mixture’s mean mixed temperature and vapour mass fraction behaviour
with respect to the saiuration line,

Caleulation of the correction factors for realistic cases of fog formation in various air
water—vapour mixtures indicated the significant effect of fog formation on heat and mass
transfer. Furihermore, the NIV fog film modsl correction factors have been combined with
the classical film model correction factors. These latter correction factors only allow for the
effect of the induced velocity on heat and mass transfer, and not for the influence of fog
formation. The compounded corraction factors account for both formation of fog and the
indnced velocity. As these correction factors are sufficiently accurate and described by
simple exprassions, they are suited and recommended for future engingering calculations.

The fog film model correction factors have been compared with experimental and
extensive theoretical studies of forced and free convective heat and mass transfer. Both
studies concerned wall condensation of dilute waier-vapour in air and the effect of fog
formation, with neglect of the induced velocity. The predictions of the basic NIV fog film
model have been found in good accord with the results of the comprehensive studies

congidered. This important comparison fustifies the film model approach to fog formation.



120



121

4. HEAT AND MASS TRANSFER IN CROSSFLOW PLASTIC HEAT EXCHANGERS

84.1 Introduction

In chapter 1 the classical film model has been reviewed and extended. In chapters 2 and 3
formation of fog has been taken into aceount. Here now, in this chapter the heat and mass

transfer in the plastic heat exchanger, see figure 4.1, is analyzed and modelled.

Figure 4.1 The plastic heat exchanger.

First, the governing equations describing the heat iransfer between gas and liquid, without
any condensation at the gas side, are derived. Analytical solutions in closed form of these
dassical equations have been provided by previous investigators. Subsequently, the
equations of partial and pure water—vapowr condensation are formulated, taking
superheating and large vapour mass fractions into accouni. The effect of the induced

velocity on latent and sensible heat tramafer is predicted with the flm model, which has
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been discussed in the first chapter.

The possible formation of fog in the gas flow is examined and described with the fog
film models of chapters 2 and 3. The resulting local equations are first sclved to predict the
rates of mass and energy transfer. A set of partial differential equations ig then integrated
0 carry the solution forward over an increment of ares. As the plastic heat exchanger
operates in crossflow, the resulting exit vapour mass fraction, mass flow, gas temperature
and produced fog are not uniform, and do not necessatily have to be in thermodynamic
equilibrium after mixing. Accordingly, expressions are derived deseribing the stable state of
the gas after mixing, resulting effectively in fog creation or dissolution.

Some characteristic features of the heat exchanger are illustrated by application of
the models to various mixtures of air and water—vapour. The theoretical predictions are
compared with experiments, carried out with a PVDF heat exchanger placed in a wind

tunnel, to verify the models presented in this chapter.

£4.2 Heat transfer without condensation

In this section the heat tramsfer between gas and liquid is discussed without any
condensation ai the gas side. Condensation will not take place when the gas is heated in
the heat exchanger, or when the gas is cooled and the coldest spot in the heat exchanger is
hotter than the dew point of the mixture or saturation temperature of pure vapour. The
exact condition for condensaiion will be specified at the end of this section.

The gas flows between the channel plates in the direction of X, the liquid through
the plates in the direction of Z , see fipure 4.2. The coordinates X and Z have been rendered

dimensionless by means of the net width B and length L of the plate, respectively:

, (a.1)
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(4.2)

el L

The net effective width of the plate B relates to the total width Bt ob minus the thickness of
a partition wall times the number of channels, gee fignres 4,1(2) and 4.2, The net length L
is formed by the total length of the plate minus the total length taken up by the
intermediate reinfor¢cements of the plates, see figure 4.1(1). In fignre 4.1 one can see that

their relative distance is of magnitude Byt

Btol
d d
4 2
4 4
g N E ZXIXX LR g 2R
4| 4 { { .
g o g A L x ;A
— ti
gea P, o i BroL =758
e W A ATA AR AV VA B . 67.2
§ ) d; =16
T KX AT d2 = lvﬁ
d L. d, =02
5 4 —— liguid 3
- o d4 =02
7- d5 =20
! dg =20

Figure 4.2 Heat transfer between channel plates (sizes in mm).

The different gas and liqnid temperatures couse sensible heat transfer between hoth fliids.

An energy balanee for an element dXd7, see figure 4.2, yields:
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Ey (B —t) =By (4 -%) - (43)

Here fg(X, Z) and fl(X, 7) represent the mixed mean temperatures of gas and liquid
respectively. All (physical) properties of the gas are from now assigned the subscipt "g" to
distinguish them from the liquid properties. By maling use of the mixed mean
temperatures the three—dimensional process in the heat exchanger is simplified fo 2
two—dimensional model.

The heat transfer coefficient Hg from gas to wall is defined as:

k No. k Nu

-8 B__2 B (4.4)
8 Dy 2d
N1 5

B, proves to be about 55 W/m?K if the correlation (1.53) of Stephan (1959) (Nu, =
7.55), the hydraulic diametet of the gas channel, see figure 4.2, and the physical properties
of air, see V.D.I, (1988), are substituied. The mean heat transfer cosficient ol of the plate

consists of two parts:

S (4.5)
Epl B, B
the mean heat transfer coefficient Hw of the plate wall is defined as:
B, =X (59
=Y 16
W 4

and proves to be about 950 W/mzK if the thermal conductivity of PVDF, 0.19 W/mK,

and average wall thickness d, are substituted. The mean heat transfer coefficient Hl from
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wall to liquid i defined as:

_ Nk Ml
Phay 4

B,

1 (&)

The mean forced convective laminar flow Nusselt number is taken ftom Dennis ef al (1959)
(Nul,m = 2.98). This correlation only accounts for the effect of the thermal entry length,
not the hydraulic. Neti and Eichhom (1983) demonstrated numerically that the
kydrodynainic development region has little effect for Prl > 6 and BJelPrthJ/L < 120. As
these conditions are satisfied in the channels of the heat exchanger, the correlation Dennis
et al. (1959) can be used. When this correlation is substitnted in equation (4.7), together
with the thermal conductivity of water, see V.D.I. (1988), and the hydraulic diameter d; of
the channel, see figure 4.2, & value of b; of at least 1500 W/m2K is obtained. The Sieder
and Tate correction for the dynamic viscosity variation across the channel, mentioned in
V.D.L (1988), is not included in equation (4.7). As by is much larger than Eg and b, the
terperature (and dynamic viscosity) variation will be small.

The heat exchange yields an alteration of the bulk gas and liquid temperatyres. For
the liquid the differential energy balance relation reads:

wi e dt
i - ! ¥
P ZEpl (-8 , (4.8)

subject to boundary condition;
(X, Z=0) = Yin - (4.9)

To the gas applies:
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w e 6%
-8 PB_ B_9p (t.~1) ,
BL 08X E'1 B

with associated boundary condition:

tg(XEU, 7) = toin

(4.10)

(4.11)

The factor two in equations (4.8) and (4.10) takes into account the heat transfer at both

sides of the plate. The gas mass flow through one gas channel is given by the total gas mass

flow, divided by the number of plates. The liquid mass flow per plate is equal to the total

liquid mass flow divided by the number of channel plates, times the number of times the

liguid passes the heat exchanger. In figure 4.1 a heat exchanger with two lignid passes is

depicted ag example. Equation (4.3) is now rewritien, ylelding i, as a combination of fg

and T, The result is substituted in equations (4.8) and (4.10), yielding:

Htl
— = NTU -1

and:

ot
—B-NTU_(F, -%
ED{ g(tl tg) H

respectively. In both equations the number of transfer units are introduced as:

9%, LB
1~ﬂ.‘U1=w"‘°—t ,
1°p 1

(4.12)

(4.13)

(4.14)
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and:

25, 1B
NTU, = - (4.15)
ED:E

The mean total heat transfer coefficient b, ot Irom gas to liquid, figuring in equations (4.14)
snd (4.15), is defined as:

1

L
Etot Epl

+ + . (4.16)

1.t
Ew HI

o=

L
E
g

see equation (4.5). Tn order to find out whether condensation takes place on the plates at
the gas side, the minimum plate surface tempetature t,(1,0) is determined. Equation (4.13),
combined with equations (4.9) and (4.11), is solved at Z = 0. The result is substituted into

equation (4.3) and equation (4.16) applied, yislding as minimum surface temperature:

B —NTUg
(%=1, Z=0) = tip t ("g,in - tl,in) N 2 . (4.17)

ol

Water will not condense if the temperature of this coldeat apot on the plaie is higher than
the saturation temperature L of pure steam or the dew point temperature bray OF &
mixtute. Both temperatures are derived in appendix C for pure steam and mixtures of air
and water—vapour. |

The golution of the coupled equations (4.12) and (4.13), with boundary conditions
(4.8) and (4.11), depends only on both numbers of transfer ynits. These crossflow equations

have been goived by many investigators, starting with Nusselt (1911). In the letter of
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Baclic and Heggs {1985) a broad review is presented of all treatments and equivalent
golutions of these classical equations. Here the solution of Mason {1954) is employed and

discussed further, The mean exit temperature of the liquid is defined as:
_ 1
f(z=1) = j B(X, 2=1) dX (4.18)
X=0

and according to Mason (1954) is given by:

T(z=1) = NTU; §(NTU,, NTUg) , (4.19)
where;

oo i

-NTU n NTU

S(NTU,, NTU )= ——— )} (1-¢ &3 —%F

& NTUNTU, ~ =0 i!

gn=0

(4.20)

_NTU, » NTU}
{1—e P —

i=0 1!

Since a trancation error analysis has not beem catried ont yet, this is undertaken in
appendix D. This analysis reveals that the truncation error is less than 10"4 if equation
(4.20) is developed up to five terms.

As mess is not transferred, the gas mass flow at the exit of the plates is evidently
equal to the entry gas mass flow and the mean exit gas temperature then readily follows
from an overall energy balance. In a heat exchanger in which the liquid passes more than
one time, see figure 4.1, the heat transfer of each pass has to be calculated in the manner

described here. The exit temperature of 2 pass serves as entry temperature of the following
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pass, until the liquid leaves the last pass and heat exchanger. The mean exit gas
temperature follows from the arithmetic mean of the determined exit gas temperatures of

each pags.
§4.3 Partial water—vaponr condensation

In this paragraph the partial condensation of water—vapour or steam in the presence of
non—¢ondensables is modelled. The equations governing heat and mass transfer due to
temperature and eoncentration differences between gas and condensate surface are derived
and solved pumerically. The followed procedure is fllustrated by means of the flow chart

drawn in fignre 4.3.
Governing equations

Using equation (4.17) it can be verified whether condemsation takes place. When
water—vapour condenses on the coldest spot between the plates, it will probably eondense
at some other locations as well. This can be examined by calenlating the loecal interface
temperature §;(X, Z) by means of equation (4.3), thus assuming ¢ priori that there is no
condengation.

I no condensation takes place the governing equations (4.12) and {2.13) of the

pravious section are locally applicable. On the other hand, condensation takes place ift
inv
tew =F @) >t , (4.21)
where ¢(X, Z) denotes the bulk vapour mass fraction of the mixture. In appendix C the

saturation function F(t) and its inverse function have been derived for sir water—vapour

mixtures.
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(%), w,(X,2), §(X, 2)

!

t; with eq. (4.3)

f)(X, 2+dZ) with eq. (4.12)
fg(X+dX, Z) with eq. (4.13)
X +dX, 2) = o(Z, B)

®c = @c,f b with
0, := G)t.,f eq, (4.22)

§(X, Z+d%) with eq. (48)

Eg(x+dx, 7) with eq. {4.30)

¢(X-+dX, Z) with eq. (4.28)

ﬁf with eq. (4.32)

(X, Z+dZ) with eq. (4.8)
Tg(X+dX, Z) with eq. (4.34)
(X+dX, T) with eq. {4.33)

Figure 4.3 Flow chart of calculational procedure for partial water—vapour

condensation.
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In the case of condensation a local energy balance for an element dXAZ, see figure 4.1,

yields:
mHp,, + 08 (F, —t) =B - %) . (4.22)

The interface temperature t,(X, Z) in this equation definitely specifies c,(X, Z) since at the
interface the mixture is saturated, that is to say, ¢; = F(t,)- The first term on the left hand
side of equation (4.22) represents the mass flax towards the condensate film where
condensation takes place and the latent heat is liberated, while the second term represents
the transported sensible heat, correcied for suction with the conventional Ackermann term.

The mass transport is caused by diffusion from mixture phase to condensate film,

According to the classical film model this transport is described as:

c—ci

l—cl.

@ (4.23)

In chapter 1 @ and @)t have been derived, see equations (1.19) and (1.25), respectively.

The mass transfer coefficient from mixture to condensate is defined as:

EmszBE= ik} (4.24)
Dh,g 2d5

The rmean Sherwood number Sk is calculated, according to the Chilton—Colburn analogy,
in the same way as the Nusselt number of the gas. In the correlation of Stephan (1859) the
Prandtl number Pr ig therefore replaced by Schmidt nomber Sc, see equations (1.53) and

(1.54).
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The formed condensaté drains along the plate surface under the action of gravity.
On the right hand side of equation (4.22) the heat transfer resistance of the condensate film
has been neglected. In appendix E it is shown that the contribution of this film can be
disregarded for pure vapour condensation, because it is 5o thin. For partial condensation
the mass flux towards the fitm is even smaller than for pure steam condensation. This
implies that the heat resistance of the film can safely be neglected in equation {4.22)
because the condensate thickness will be smaller as well.

As the intermediate reinforcements between the channel plates approximately have
a relative distance B, the Alow—off lengths of the condensate film are equal for co—, counter

and crosscurrent condensation, see figure 4.4,

cocurent Y countercurrent crowscurrent
.
condensation cundensation condeasation
, g I
[
Bin ' | [
gin
.
T l e
= et

Figure 4.4 Practical orientations of channel plates towards gravitation.

This means that the equations derived here become valid for these three types of

condensation heat transfer. The orientation of the heal exchanger to the vertical is not
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relevant 10 the partial and pure vapout condensation models.

In equations (4.22) and (4.23) the classical film model correction factors © o 3nd 8,
appear. That is to say, it is assumed o priori that fog is not formed in the mixtare. Using
the value of t; obtained, and associated value of 6y equation (2.1) is nsed to examine

whether the mixtnre is supersaturéted:

O e— ¢
4e S (4.25)
9y

dt t‘:l

1:%
g

tg— i
If this equation predicte supersaturation, the value of t; obtained is not correct and has to
be re—determined from equations (4.22) and (4.23) in which the fog film model correction
factors @ of and Gt,f’ derived in chapter 2 or 3, now have to be substituted. These
correction factors are based on the saturation eondition, which is the most ideal condition
for fog formation, In reality supersatnration will always take place to some extent in the
gas. Accordingly, the actual heat and mass transfer will ie between the levels pradicted by
the conventional film model and saturation fog film model.

With the value % finally cbtained, the differential energy balances for the gas and
liquid sides, and the mass balance for the gas side, are derived. The heating of the liquid is
described by equation (4.8), with associated boundary condition (4.9). In order 1o
formulate the decrement in total mass flow, vapour mass fraction and mixture
temperature, the gas flow between the plates is congidered in the following,

For a superhesated mixture a differential vapour mass balance yields equation (1.33).

This equation iz adapted o flow between parallel plates (see figure 4.2) by:

(Pa(xﬁ)Dh _ (pﬂ(x,Z)ds _ Wg(X,Z)

426
4 9 o1 (42¢)
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Combining equations (4.26) and (1.35) yields:

w_ (X, Z 1-c,
g )= in_ (4.27)
Ve in 1 — &(X,Z)

which prescribes the comservation of the non—condenssbles in the mixture. Combining

equations (1.33), (4.26) and (4.27) now yields:

- - 2
g€ 2 LB T-c(l-9
Z_ e l(f : (4.28)
fo). 8 wg,in el =g 1 =Gy

with 15 boundary condition on c:
U(#=0,2)=¢,, - (4.29)

The variation of the gas temperature is described by equation (1.38). For flow between
parallel plates this equation, with equations (4.4}, (4.23), (4.24), {4.26) and (4.27), can be

writtcn as:

iy 2h LB T—¢y 1 —C
— B __ 8 [@t— S e ‘] (0, —t) . (430)
ax Ye,in“p,p Levﬂ'ig % %in B

with equation (4.11) as boundary condition.

As soon as the mixture is locally saturated, so that c(X, Z) = F(fg(X, Z)), and the
path of the bulk properties is direcied into the supersaturated region, fog is created in the
bulk, The behaviour of the bulk properties is examined with the help of equations (4.4),

(4.24), (£.28), (4.30) and (2.50);
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¢ —-C,
® L.
¢ T—e (-9 &

" _ _%E T -c [fg
[G’t o ML 81 '—_c] (tg — %)

Fog is formed in the bulk if the resulting bulk properties’ path is directed into the

supersaturated region. The amownt of bulk fog is then governed by equation (2,56);

ar _&@E‘%[l &), 117
= 'at]i, N "I“’i Le—dt_ Er—ti
M, = & B . {4.32)
daF + 1—¢ Hp-l-—
dt ( )_I'— lat

The differential mass and energy balances in the case in which bulk fog is created are
represented by equations (2.53) and (2.54), respectively. For flow between paraliel plates

these equations are, with application of equations (2.30), (4.4), (4.24) and (4.26), written

G [N_ Oer= t
g, in"p,g ugLe 1
(1-3) 2 (4.33)
(t —t. ) —DF’-EM.[] T—¢_
H)at in

and:
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ﬂz_ QH‘?‘LB [@ B Ly o f— Ci
ax Wy inpg LevNﬁg =g
L s (4.34)
- ;(5 —t)
{] I—¢,'g 1 7

respectively. Applying equation (4.27) the effect of formed fog on the mass flow of the
mixture iz disregarded, because this amount is expected to be very small. For the same
reason the influence of the droplets on the physical properties of the mixture is neglected.

Note that the Nusselt number in equations (4.4), {4.25) and (4.30)—(4.34), and the
Sherwood number in equations (4.24), (4.25), and (4.30)—(4.34), are based on the initial gas
mass flow. In fact the mass flow decreases due to wall condensation and fog formation.
However, these numbers do not depend on the magnitnde of the mass flow for fully
developed laminar flow, and depend only weakly on the mass flow when entry effects are
taken ini¢ account, ses equations (1.53) and {1.54).

In the case of fog formation in the film, the fog film model correction factors @c,f
and E)t,f are used in equations (4.22), (4.23), (4.28) and (4.30)—(4.34) instead of @, and
Qt’ respectively. The path of the bulk properties is then examined with:

_LF gp
& PO i, dF
E;LE b _l“:gfg , (4.35)
Te, T¢; gy .

1

instead of equation (4.31). Strictly speaking, equation (4.35) is a combination of equations
(4.28) and (4.30), where @ and O, have been replaced by G)C ¢ and 8, ;, respectively, and
? ¥

equation (2.2%) applied. In this chapter both the correciion factors based on the asymptotic
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solution, obtained in chapter 2, a3 well 45 the compounded correction factors of chapter 3,
are employed, in order to investigate the differences in required caleulatiomal time and

produced numerical results.

Numerical solotion

The modelling of the partial water—vapour condensation process in this section has resulted
in a set of equations, applicable to each liguid passage in the heat exchanger. One algebraic
equation to determine t;, and three partial differential equations describing the
temperature rise of the liquid and temperature and vapour fraction drop of the gas

mixture.

(Kap» Tyg) Ky B
I
T, Z=0)
=in
(X, 2) b
(xlr ZU)
b x A
7
- (Xg Z)
(X Zyp) TX=0.2) =ty I (X Zy)
wg(}(=0, Z) = wg,in
o(X=0,2) = S

Figure 4.5 Digcretisation points.
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Four different local physical cases at the gas side have been distingnished. Namely heat
transfer without condensation, condensation and no fog formation, condensation and fog
formation in the film and/or in the bulk. Account has been taken of the exact conditions
for these physical sifuations, and their consequences with respect to the governing
equations. To solve the equations numerically per pass, t is calenlated in (I\T+1)2
equidistant points in the X—Z plane with a intermediate distance b, see figure 4.5. In
(X=0, Z=0) fg, ¢ and Il are known and t; can be determined. With this t;, and associated
c;, the values of fg, ¢ and fl are evaluated in adjacent points with an integration scheme.
For stability reasons an implicit Euler’s formula is employed to determine Eg(K=b, 2=0),
o(X=b, Z=0) and }(X=0, Z=b). In these adjacent points the procedure of determining t;
iteratively is repeated, followed by further integration steps, until the borders of the plate
have been reached.

The mixing cup temperature of the outilowing liquid after each passage is given by
equation (4.18). The exit temperature of each pass serves as the entry temperature for the

next pass. The mean exit gas temperature of pass jis described by:

_ 1
T (X=ly=— 1

Es) -
Wi X=1) 729

wy(X=1,2) T, (X=12) 4z , (4.36)

and the mean exit vapour mass fraction as:
_ 1
Gx=l)=——2— [ w (X=1,2)&X=1,7) a7 . (4.37)
w_ (X=1),J. 8
& Z=0

In equations (4.36) and (4.37) the mean exit mass gas flow per plate of pass j features:
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1
Wy {X=1) = J wy(X=1,2) 6X . (4.38)
720

The integrals appearing in equations (4.36) and (4.37) comtain the local exit gas mass flow
as weight factor. As the heat and masgs {ransfer takes place in crossflow with the cooling
liquid, the exit mass flow will depend on the coordinate Z, the direction of the Lquid flow.
The gas mass flow follows from the vapour mags fraciion via equation (4.27).

The total amount of produced fog in the bulk in pass j is governed by:

11
W, (X=1)=1B m; dXdZ . (4.59)
£j f
X=02=0

The integrals in equations (4.36)—(4.39) are evaluated numerically by means of Simpson’s
rule. In general, the mean exit gas flows and temperatures of each pass will be different.

The mean exit gas mass flow, per plate, is governed by:

Boass
—_ 1 -
wX=)=—— } ¥, (X=1) , (4:40)
g:)
) Rpass =1 ©
and the mean formed fog by:
Tpass
wix=1)=—1- § Wy {(X=1) (4.41)
npa.ss j=1 ’

The mean exit gas temperature per plate, taking account of multiple passes, follows from:
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pass
Xel) = — L 2 ¥ (X=1), (X=1) , (4.42)
. ass g(x 1) . E:] B

%g(

and the mean vapour mass fraction of the gas from:

_ . “pass
K=)m—L—— § ¥ (x_l)c(x 1) - (4.43)
pass g(x 1} j=1 &)

In equations (4.42) and (4.43) the exit mass flow of each pass acts as weight factor.
(E(x=1), Tx=1))
superheated saturated supersaturated

WHX=1) =0 (i) (i) (i)
W{X=1) > 0 (it} (i) (iid)

() oy =S(X=1) (i) oy > 8X=1) (i) ¢, t-r-’.%(X=1)

tg,out = tg(X:l) tg,out < tg(X=1) g out t (le)
W out = wg(x=1) Wy out ~ Wg(X=1) Ve out < wg(X—l)
Wi out = wi{X=1) Vi out < W(X=1) i ot > wi{X=1)

Table 4.1 Possible conditions of pas and transformation rules.

The mean exit values determined from equations (4.40)—{4.43) are not in general identical
with the ultimate exit values after mixing, owing to the crossflow principle and possibility

of multiple liquid passages. If the calculated mean values correspond to superheat or
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saturation, and there is no fog in the gag after the plaies, that is "\Ff(x=~1) = 0, the
calculated meen mixed values are identical with the values after mixing, denoted as tg,ou "
and Cont In the case of G{(X=1) not egual to =ero, the mean exit values have to be
satturated to draw the same conclusion. In table 4.1 both cases are marked by (i).

On the other hand, when the mixture is superhested, and WE(}C:l) iz not equal to
zer0, 4 part of the formed fog between the plates will dissolve after the gas has left the heat
exchanger and is mixed; this case is marked in table 4.1 by (ii). The dissolution alters the

vapour mass flow:

Cout Vg ont = SUX=1) Fy(X=1) = FXl) =g o (4.44)

In this equation the index "out" refers to the bulk state of the homogeneous gas after

since the

mixing, when it is in thermodynamic equilibdum. The equation contains wg out
il

gas mags flow is also affected by the retmrn of droplets, which have been considered as
matter lost between the plates, to the vapour phase. The inert components of the gas mass

flow hefore entering the heat exchanger are not affected in and after the heat exchanger:

1- c(X 1) 11—
= w1y e in
wg,out l—_""-— (X 1) ?—— Wg,il'i (445)
out Cout
The dissolution of fog is at the cost of the gas bulk temperature;
(tg out ~ FglX=1)) (e o (g oy = Tp(X=)) + €, Wo(X1)) (1.40)

Hyos w{c)ut w{X=1))
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out’ Vgout and tg,mlt follow

directly from equations (4.44)—{4.46), respectively, simce wp . then equals zero. A
?

If all fog can be dissolved hy the superheated mixfure ¢

rmixture which is not sufficiently superheated to absorb all fog will become saturated and a
part of the fog is left over, that is wg . is unequal to zero. Equations (4.44)—(4.48),
d

combined with the saturation line (2.5), then yield t F(

E0ut’ Sout = tg,c:n.n:)' Wg,Out an
¥t out’

The same set of equations is applied to determine the same physical properties when
the mixture leaves the plates snpersaturated and fog is created in the mixture by mixing; in
table 4.1 these cages are marked by (iii). Steinmeyer (1972) mentioned this mechanism of
fog formation by mixing of gas flows with non—aniform vapour fractions and temperatnres

as one pertinent sonrce of fog formation,
§4.4 Pure steam condensation

When (superheated) steam enters the duct to condemse as & film on the plate, the heat
transfer will be highest. For a superheated vapour there is, beside the latent heat transfer,
also a contribution of sensible heat transfer. This sensible heat transfer results in a decrease
of mass transfer towards the plate and hence in the formation of condensate. Taking these
effects into account, in this section the governing equations of the process are derived and

gsotved. The procedure followed 15 illustrated in figure 4.6.
CGoverning equations
To examine whether condensation iakes place, the local interface temperature is

determined using equation (4.3), thus assuming condensation will not take place. I the

calculated temperature is such that:
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o ainy
trt = A (Pv)

i 2 teat (4.47}

the assumption of no condensation was correct. The differential energy balances (4.12) and
(4.18) aze then applicable. In appendix ¢ the inverse Antaine relation Ainv(Pv) is given for
steam. However, when equation (4.47) is not satisfied, condensation takes place and a local
emergy balance for an element dXdZ yields equation (4.22), with i; replaced by t

sat’

e

RV
-k
. . S _ _ e
mH , + o Eg('t'?g tsat)_le(tse,t ) . (4.48)
TR
[ & -1

The first term on the left hand side of this equation represents the liberated latent heat
flux intoc the condensate film. In the second term the semsible heat fux is taken into
account, see equation (1.24), with the Ackermann correction for suction. This Ackermann
correction i originally based on the classical flm model analysis of a binary mixture
presented in chapter 1, but applied in equation (4.48) to non—diffusional condensation of
pure vapour.

In appendix E if is demonstrated that for the plastic heat exchanger the
dimensionless maas flux ¢t is smaller than 1.18. Miznshina (1978) proved the film model to
be in good agreemernt with pure benzene condensation experiments for ¢t smaller than 1.4.
Furthermore, it is shown in appendix E that the heat transfer coefficient of the water
condensate film is very large when compared with Ep]’ hence the coefficient of the
condensate does not appear in equation (4.48),

The temperature rise of the liquid in the channel plate is described by equation (4.8)

with t; replaced by ., :
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6?1_ 2% LB

hal (4.49)
a7 Wi Cp , 1

(tsat - t’1) !

with equation (4.9) as boundary condition. As the pressure drop, when compared to the

absclute pressure, is very small in the gas chanmel, see appendix E, t__, is comstant in the

channel.

t; with eq. (4.3)

[s8 Z+d2) with eq. (4.12)
. . js'g()(+d}{, Z) with eq. (4.13)

X ‘=
Wg( +dX, %) wg(Z, Z)

m with eq. (4.48)

(X, Z+d2) with eq. (4.49)
l."g(X+dX, Z) with eq. (4.54)
wg(X~|—dX, Z) with eq. (4.52)

Fgure 4.6 Flow chart of calculational procedure for pure steam condensation.

When it is further assumed o priori that condensation takes place on the entire plate,
equation (4.49) can be integrated and houndary condition (4.9) applied, yielding the liquid

temperature in the plate:
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2k LB
__ Bl 4

_ wlcp 1
tl(x, Z)=t1,in+(tea.t_tl,in) (1—¢ ). (4.50)

The maximum surface temperature 1,(X=0, Z=1) is calculated by substitution of equations

(4.50) and (4.11) into equation (4.3), producing:

t.(X=0, Z=1) = ¢ +M(t —t )
T ST in B gin  Lin
pl
. _ 28 LB (4.51)
tot W11
T (bgy —tpin) (e )
g

If this temperature is smaller than t__., the assumption of entir¢ plate condensation was

sat?

correct. If this assumption was not correct, the liquid temperature is determined by
numerical integration of equation (4.49) until the end of the condensation tegion of the

plate is reached. For saturated steam, thus t =1 the surface temperature never

z,in Rat’
becomes higher than the saturation temperature and equation (4.50) is always applicable.
In contrast to partial vapour condensation, the interface temperature is explicitly

knowr in eguation {4.48), namely t =% and need not to be determined iteratively.

sat’
Instead of t; the local mass flux m(X, Z) has to be determined iteratively now; with this
mass flux known the differential mass and energy balances at the gas side are derived. At

the gas side the decrease of the maas flow ia described by:

dw
—B=2Bm |, (4.52)
X

with as appropriate boundary condition on wg:
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wg(X=O, L=w (4.53)

g.in

The variation of gas bulk temperature is given by equation (1.38) with t; replaced by t ..

This equation is adapted to flow between patallel plates with equation (4.26), and with

equation (1.26) expressed as:

6T 2RLB )
T O B

with pertaining boundary condition (4.11). Three first order partial differential equations,
coupled by one algebraic equation describe the process of superheated vapour heat and
mass transfer. In the caée of "whole plate” condensation, e¢.g. saturated steam (tg,in B
tog;): 20 amalytical solution (4.50) has been derived. In the following a numerical solution
procedure is deseribed that provides a sclution of the process equations for both "partial"

and "total" plate condensation.
Solution procedure

The solution is determined in (N+1)2 discrete points. These points are equidistant in the
direction of X and Z, with a intermediate distance b, see figure 4.5. In (X=0, Z=0) the gas

and liquid temperatures are known, being t and b i respectively. If the interface
¥

in
temperature according to equation (4.3) is i;gher than the saturation temperature, no
condensation will take place. The lquid and gas temperatures in (X=0, Z=b} and (X=b,

Z=0) are then determined by equations (4.12) and (4.13), respectively.
In case condensation takes place mfX=0, Z=0) is obtained by numerical iteration of

equation (4.48). Subsequently the values EI(X;D} Z=h), fg(X:b, Z=0) and Wg(x=b’ Z=0)
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are determined from equations (4.49), (4.54) and (4.52), respectively. The values of the
temperatyres and mass flow in these adjecent points are once again evaluated using an
implicit Buler's formula. The procedure of iteration and integration is carried out until the
boundaries of the plate, (X=1, 0 ¢ Z ¢ 1) and (0 < X < 1, Z=1), have been reached. The
mean gas exit temperature and mass flow of pass j are calenlated in the discrete points at
the edge of the plate, using the expressions (4.36) and (4.38). For multiple passes, with
equations (4.40) and (4.42) the mean exit properties per plate are determined. The liguid
temperature after each pass follows from equation (4.18), and serves as entry temperature

for the following pass.
§4.5 Computaticnal results

Calculations on a PVDF heat exchanger with an effective length of 0.40 m and width of
0.384 m, corresponding to 86 parallel channel plates, have been ¢arried out. The liquid fow
passcs the channel plates twice, as depicted in fignre 4.1. It flows through 48 plates from
inlet to opposite headers, is collected there and mixed, and flows then through the 48 other
plates to the exit of the heat exchanger. The initial liquid temperature is set equal to
19.5°C for the calculations, the entering gas has a temperature of 62°C and absolute
pressure of 1.028 bar. The entry mass fraction of vapour, Gy TAREES from zero up to and
including 9,142, These entry conditions are such that all aspects of the model treated here
will ocour, namely no condensation, condensation without fog formation and condensation
and fog formation. Moreover, the induced velocity is small for small ¢, is Jarger for larges
€y a0id i8 greatest for ¢;, equal to 0.142 (corresponding to 3 saturated mixture).

The physical properties of both flnids are evaluated at the arithmetic mean of entry
and exit temperatyre, as suggested by V.D.I (1988). At the gas side all properties are
evzluated at the arithmetic mean of entry and exit composition (in mole fractions), except

Hlat' which iz evaluated at t;. The contributions of both components are weighed by the
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present mole fraction, for example see equation {#.9), except the thermal conductivity and
dynamic viscosity, which are evaluated {ollowing Perry and Green (1984), for example see
equation (F.25). Al physical properiies are taken from V.D.L (1988), except the diffusion
coefficient, whick is taken from Edwards et al (1979), see equation (F.22).
In figure 4.7 the dimensionless exit temperatures of both fluids, defined as:
b t1 in

(=—HI% (4.55)

tgin ~Y,in
are depicted as a funciion of Gy for N‘I‘Ug = 0.612 and NTU) = 0.04], and NTUg =0.710
and NTT) = 0.038, and in figure 4.8 for NTUg = 1,001 and NTU1 = (0.039, and l'iITUg =
1.270 and NTT,; = 0.036, In both plots also the dimensionless exit gas mass flow and fog

mass flow are depicted, both flows rendered dimensionless by means of the entry gas mass

flow:

(4.56)

For clarity’s sake the dimensionless fog has been multiplied by = factor 10. The predictions
of the compound fog film model (for all computations thie model proved to product
identical results as the asymptotic fog film model) and the solutions of the classical flw
model (thus without fog), which are nsed as reference, are depicted in both figures.

One can see clearly in figures 4.7 and 4.8 that for small ¢, no condensation take:
place in the heat exchanger and consequéntly the exit mass flows equals the entry mas
flow. For ¢, 2 0.017 condensation and liberation of latent heat sets in in both Hgures
resulting in an exit temperature rise of both fluids and decrease of the exit gas mass flow

For ¢,z 0.084 and ¢ 2 0.080 in figure 4.7 and 4.8, respectively, fog formation near th



145

wall appears to take place, indicated by an anpmented temperaturs fall at the gas side. As
long a5 the bulk is still superheated, formation of fog near the wall canses an emhanced

sensible heat transfer; see fignre 3.4 for a graphical explanation.

1

T

-
-

=——=—- tompound fog film model Wg,out
s = conventional film model }

——— tompound fog fitm model

~————-— ¢onventlonal film model }

x
g exparimenis

0.5 el 3

18 wf,nut

a0 0.071 e 0.142

: . . o o _
Figure 4.7 Exit properties for t],in = 195G, tg,in = 62°C, Py, = 102900 Pa,
1\1"'.1:"(.1'g = §.612 and NTUI = 0.041 (I), and N‘I‘U‘g = 0.710 and NTU1 = 0.088 (II),

according to the fog film model and conventional film mode],

For ¢ > 0.111 and € 2 0-097 in figure 4.7 and 4.8, respectively, fog is formed and latent
beat is liberated in the bulk and the temperature fall is reduced. As the entry vapour mass
fraction is close to the maximum (saturated) value, the bulk properties reach the
saturation line sooner and the developed bulk fog rises, see figure 3.4. Consequently, the

exit gas temperature even exceeds the value provided by the conventional film model.
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compound fog film model w
= — conventional film model }

—imm pampound fog Glm model
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# .
g experimenta

4.0 0.071 Gin 0.142

Figure 4.8 Exit properties for ¢, = 19.5°¢, tein = 62°C, Py, = 102000 Pa,
NTU, = 1.001 and NTU, = 0.039 (1), and NTU,, = 1.270 and NTU, = 0.036 (I1),

according to the fog film mode} and conventional film model.

Pigures 4.7 and 4.8 show that about one third of the initial vapour present in the mixture
condenscs in the heat exchanger; the level of {wall and droplet) condensed water is
represented by the deviation of the dimengionless exit mass flow from unity. One can
furthermore observe that the exit gas mass flow and related vapour mass fraction are
predicted equally well by both models.

However, the numerical resulta indicate that the mate of wall condensed water is
reduced by fog formation, since a part of the condensed water, of about 5 %, has become

fog. Both figures reveal that only a small part of the initial vapour mass flow leaves the
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heat exchanger as fog. Accordingly, the assumption that the droplets do not affect the
physical properties of the gas appears to be correct a posteriori. All created fog is however
undesired since it is a yield loss and the formed droplets are diffienlt to remove, Additional
computations with tl,in = 0°C furthermore revealed that for this realistic condition even

10 % of the condenged water becomes fog, which is a substantial amount.
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Figure 4.9 Exit properties for t) ;, = 20°¢, tein = 82°C, P, = 101325 Pa, NTU,
= 0.656 and NTU; = 0.042 (1), and NTU, = 0741 and NTU} = 0.038 (11},

according 0 the for film model and conventional film model.

The exif gas which contains fog is saturated. As the exit vaponr fraction is predicted
equally by both models, and the exit gas temperature of the fog film model exceeds that of

the conventional film model, ore can conclude that these exit conditions, following the
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conventional flm model, correspond to a supersaturated and unstable mixture.

Further examination of figures 4.7 and 4.8 indicates that the exit water temperature
is not affected by fog formation. This would be expected; in chapter 2 and § we have
already seen that the total (latent and sensible) heat flux towards a wall i not changed by
fog formation. Both figures also illustrate that the fog and conventional film model deviate
only in the prediction of exit gas temperature. For that matter, this deviation is very
modest, typically 1°C. That is to say, the formation of fog and its effect on the process of
heat and mass transfer will be hard to verify quantitatively, Particularly when one realizes
that a supersaturated mixture actually exhibits behaviour between the predictions of the
conventional (¢.e perfect non—equilibrium) and fog film model, since the latter is based on
the saturation condition (ie perfect equilibrium between vapour and droplet phase).

In figure 4.9 results of similar calculations sre depicted for entry liquid and gas
temperatures of 20°C and 82°C, respectively, Py, = 101328 Pa, NTUg = 0.656 and NTU;
= 0.042, and NTUg = 0.741 and NTU; = 0.038, ¢, ranging from zero up to and 0.388,
which is the maximum and saturated vapour fraction. The fignre shows the same trends as
figures 4.7 and 4.8. The main difference is that the amount of transferred heat is larger,
owing to the larger vapour fractions in the gas. Condensation starts for G ™ 0.019, which
is a higher value than the values we have seen for "g,i A= 62°C. This is due to the higher
temperature of gas and interface,

Fog is not formed in a layer next to the wall, which can be attributed to the
curvatures of the relation between temperature and vapour fraction in the film, and the
saturation line. For higher vapour mass fractions and Le < 1 the bulk properties are als
less, or not, directed into the supersaturated region and hence bulk fog is not likely to be
formed. Accordingly, the solutions of the conventional and fog film model coineide,

The entry gas temperature pertaining to figure 4.10 is 100°C, tl,in =2°C, P tot =
101325 Pa, NTUg = .621 and NTUI = (0.042, and NTUg = 0.742 and NTUl = (.038. The

largest ¢ of this figure is unity, which corresponds physically to pure saturated steam
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entering the heat exchanger; the employed model for this sitnation has been discussed in
§4.4. Figure 4.10 indicates that condensation sets in for ¢;) = 0.023 and that for all cases
fog is mot formed. ALl the mixtures are again sufficiently superheated, implying that the

predictions of the fog film model and conventional film model coincide,

0.5

g

/ '*
compeound fog film mode]

conventional film model }
__ compound fog film model] .
conventional film mode)

§ experiments

0.0 0.5 Sin 1

Figure 4.10 Exit properties for 3y, = 20°C, t = 100°¢C, Py = 101325 Pa,
¥

gan
NTUg = 0.621 and N’I‘Ul = 0.042 (1), and NTUg = 0.742 and NTU, = 0.033 (II),

according o the fog film model and conventional film model.

In order to indicate some characteristic features of the processes in the heat exchanger, the
dimenaionless interface temperature is determined for one group of the conditions of figure
4.10 (N’I‘UE = 0.742 and NTU; = 0.038, marked by IT). To this end, for a plate of the first
pass, {,(X=0, 7=0), Ci(l,()) and Ci(D,l) are determined, {i(O,l) represents the maximum
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and Ci(l,o) the minimum temperature of plate or condensate film, respectively, It can be
verified, e.g. see figure 4.5, that (;(0,1) only depends on NTU), ¢;(1,0) on NTUg and (;(0,0)

on neither of them.
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Figure 4.11 Interface temperatures for ), = 20°C, ¢ = 100°C, Py = 101325

gin
Pa, NTU g = 0.742 and NTU; = 0.088, according to the fog and conventiopal film

model.

For heat transfer without condensation these temperatures are explicitly known, Ci(0,0) is
obtained by rewriting equation (4.3) and application of equations (4.9), (4.11), (4.16) and
(4.55):
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h
¢(0,0) = 2 (4.57)

¢(1,0) follows readily from equations (4.17) and (4.55), and (C,1) is determined by
solving equation (4.12) with application of equations (4.9) and (4.11), and substitution of
the result iz equation (4.65), yiclding:

B, , -NTU
((01) = 1—;_—”“ ¢ 1

g

{4.58)

For =1 the pure steam condensation process, these three temperatures are also kaown,

§(X, ) is uniform and equal to vnity, since ty, = 100°C.

= tgin

In figure .11 £(0,0), ¢;(0,1) and ¢;(1,0) ere drawn versus the initial vapour mass
fraction. One can notice the smooth transition from heat transfer without condensation,
repiesented by horizontal lines, through partial condensation to pure steam condensation
heat transfer. The onset of condensation is indicated by 2 sudden rise of ¢, at first in (X,
Z) = (1,0) and subsequently in (0,0) and (0,1). In order to assess the uniformness of (; over
the condensate surface, the ratios ¢(1,0)/4(0,0) and ((0,0)/¢,(0,1) are also depicted in
figure 4.11. These lines indicate that the interface temperature 15 not uniform in both the
direction of X and Z; the interface temperature ratios differ significantly from unity, except
for Cin close to unity. Despite the frequent assumption in conventional condenser analysis
of uniform condensate interface temperature, here this temperature substantially depends
on the coordinates X and Z. Or, in other words, the processes and pertaining models are
essentially {fwo—dimensional.

The accuracy of the numerical procedures has been assessed by varying the number
of discretisation points and considering its effect on exdt values. These computations

revealed that for 15x15 points the numerical error is less thau one per cemnt. For the
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examined heat exchanger with two passes this grid corresponds to a computational time of
20 seconds on Harris H500 for partial condensation and fog formation, 10 seconds for
partial condensation and 5 seconds for pute vapour condensation. These values serve very
well the ohjective of the present investigation, even if on an IBM AT these requisite times
will be & factor 5 lomger. Al computations disclosed that the predictions of the
approximate fog film model of chapter 2 are practically identical to those of the compound

fog film model, but thai the compntational time is twice as long.

§4.6 Experiments

The theoretical predictions of the previous section are now compared with some performer
experiments, These experiments have been carried out in cooperation with the Mechanica
Fngineering Department of Eindhoven University of Technology. Main features of test rig
and experiments performed have well been reported by Beekmans (1989), Maclean (1986,
and Van Vredendaal (1990). Some aspects of apparatus and experiments are summarize

below.

Apparatus

The heat exchanger was tested at ambient pressure in a low speed wind tunmel with ax
entire length of about 16 m, see figure 4.12. Air is transported by means of two fans (2 3
0.88 kW) and heated using metal heat exchangera. In thege heat exchangers superheatec
sieam of 150°C with a maximum pressure of § bar (bt = 140°C) condenses. The steam it
supplied by a boiler with a maxmum capacity of 1800 kg/hr. Steam from the sams
generator is injected into the tumnel to create gas mixtures with arbitrarily desirec

temperatures and vapour mass fractions.

The flow of the gas mixture is determined with an orifice plate, In the widening
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funnel of the tunnel a central plate is placed to distribute the gas uniformly over the plates

{a < 5 m/s) of the plastic heat exchanger and avoid preference flows.
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1: inlet, 2: fana, 3: metal heat exchangers, 4: injector, 5: orifice plate, 6: plate,

7: plagtic heat exchanger, 8: droplet cateher, 9: weighing—machine, 10: exit

Figure 4.12 Experimental apparatus (sizes in m).

To perit & visuzl inspection of the phenomena at the gas side {condemsation, fog
formation), the heat exchanger is placed in a rectangular chamber with 10 mm thick
heat—resistant glass walls. A (removable) cover allows further insulation of the tunnel (and
glass chambers). The tunnel is heated elecirically between steam injector and glass
chamber to prevent premature condensation and to shorten the measurement time. After 1
br 5 reproducible steady—state situation could usually be obtained. After the heat

exchanger a droplet eatcher removes large droplets and homogenizes the exit gas flow.
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Holes have been provided in the walls of the tunnel (in the glass chamber in front of the
heat exchanger and at the end of the narrowing funnel after the heat exchanger) to measure
the temperatures and relative humidities of the gas with mercury thermometers and
Vaigala HMP—135Y devices. Before the heat exchanger the absolute pressure in the tunnel
is determined with an U—tube manometer,

The heat exchanger was placed with respect to gravity such that countergurrent
condensation occurs on the 48 plates of the first pass and that cocurrent condensation takes
place on the 48 plates of the second pass, see figure 4.4, The rate of produced condensate
was measured with the help of a weighing—machine and 2 chronometer. The temperature of
the condensate was measured with a mercury thermometer.

The entry and exit temperatutes and flow of the primary water are measured with
mercury thermomecters and a robameter, respectively. The demineralized water is draw off
and carried back to a closed water circnit. The capacity of this circuit is large enough such
that the entry temperature is practically comstant (17.8°C < tl,in < 20.8°C). Before the

measurements were performed all devices have been calibrated.
Results

The depicied experimental results in fignre 4.7, taken from in appendix G, and
uncertainties in both NTU’s, discussed in appendix H, indicate that their NTTU, ranges
from 0.028 to 0,041 and NTUg from 0.612 to 0.710. These values imply that the
experimental dimensionless exit values should be located between the two theoretical
sitnations depicted in figure 4.7. Both cases namely represent the most extreme conditions:
the smallest liquid flow and largest gas flow (marked by I), and largest liquid flow in
combination with the smallest gas flow (II). For the same reason the selected experimental
results, with their uncertainties, for figures 4.83—4.10 have to lie between the depicted

theoretical solutions a8 well. In appendix G all experimental results are documented,
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gupplied with a global energy balance. The vertical and horizontal bars in figures 4.7—4.10
are the ranges of uncertainty in the primary measurements of temperature, relative
humidity, condensate weight and time, see appendix H. The results of ihiz appendix

indicate that the uncertainties in g ¢ and W are smaller than 0.0120,

n' Cl,out’ Cg,ou
0.0034, 0.0032 and 0.0085, respectively.

The observations of the liquid exit temperatures suggesi that the theoretical
predictions overestimate the true heat and mass transfer for large condensation rates. This
overprediction of heat and mass transfer is attributed to the actual heat resistance of the
condensed water, which has been neglected theoretically. Duyring the c¢ondensation
experiments it was observed that, contrary to the assumptions of the model, the water
condensed dropwise on the PVDF channel plates, sometimes forming bridges between to
adjacent parallel walls. The figures also show the trend that the theoretical mass transfer
rates overestimate the trye mass fluxes, while the true sensible heat transfer appears to be
better than theoretically expected.

The droplets drain off the plate uniil a intermediate reinforcement of two plates is
reached. These reinforcements stop the flow of the condensate and in this way the negative
effect of the condensate is reduced. It is expected that the slightly negative effect of
condensate on beat transfer will be reduced if the heat exchanger is placed with respect to
gravity such that crosscurrent condensation takes place with the gas flow in the direction of
the condensate flow, see figure 4.4.

In the previous section it was explained that it is difficult to detect quantitatively
the effect of fog formation on exit properties, and that it can be detected qualitatively only.
To this end, a 300 W light was used to luminate the gas flow in the glass chambers and
detect the threshold entry vapour mass fraction that results in fog formation. Fog is first
observed in the gas that leaves the plates of the first liquid pass (more specifically: where
the cold liquid enters the plates) and subsequently, on increasing c; , after the plates of the

second pass. The gae flows are separated by a plate of 0.2 m to avoid direct contact and
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mixing of both flows. To promote fog formation and avoid supersaturation as much as
possible, extra nuclel are added to the gas flow. These nuclei are generated by glowing saw
dust at the entrance of the wind tunnel. A typical glowing rate is 0.3 kg saw dust per hour,
while the total gas mass flow at the entrance of the tunnel (corresponding to 08 Wg,in)
varies from 0.2 kg/s to 0.5 kg/s, see appendix G. In tables 4.2 and 4.3 the experimentally
determined bounding ¢; {for each pass) of no fog/fog for the underlying conditions of
figures 4.7 and 4.8, respectively, are listed. Tt was noticed that the extrs nuclel were needed
to create visible fog in the vicinity of the critical ¢, . For ¢, that exceed this threshold
value significantly nuclei were no longer needed.

In both tables also the theoretical predictions for the onset of film and bulk fog are
included. One can see from these tables that fog formation starts for a lower ¢ when

NTUg is large (which is to say a small gas flow} and NTU; is small (large liquid flow).

firgt pass second pass

film  bulk film  bulk

NTUg = 0.612, NTU}. = 0.041 0084 0.111 0.104 0,127

NTUg =0.710, NTUI = 0.038 0.081 0.105 0.100 0.123
Fog observation 0.106 0.121

Table 4.2 Theoretical and experimental threshold entry vapour mass fractions for

film and/or bulk fop formation,

The tesults indicate that the experimental threshold ¢, correspond to the theoretical
boundaries for developing bulk fog. It is also possible of course that film fog is observed anc
that the difference in ¢, (about 0.02) can be attributed to supersaturation. However, ir
the considered temperature and saturation mass fraction regions (20°C < t € 62°C, 0.014 ¢

F(t) ¢ 0.143) a vapour supersaturation of 0.02 corresponds to a temperature supercooling of
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about 6.5°C. Such a supercooling level is not lLikely to take place, in appendix F for
ingtance it can be seen that visible fog formation occurs if supercooling exeeeds 1°C to 2°C.
Accordingly, the experimental and theoretical results can be considered as an indication for
the correctness of the application of the fog film model to channel flow, as described in §2.6
and §3.4.

The main physical feature of the suggested procedures is the distinction between
film and bulk fog. Created film fog was neglected as long as the bulk properties are
superheated, legitimated by the thinness of the film.

first pass setond pags

film  bulk film  bulk

NTUg = 1.001, NTU, = 0.039 0.078 0.097 0.094 0.115

N'I‘Ug = 1.270, NTU1 = 0.026 0.076 0.088 0.087  0.104
Pog observation 0.097 0.111

Table 4.3 Theoretical and experimental threshold entry vapour mass fractions for

film and/or bulk fog formation.

This approach is allowed for turbulent and developing laminar chaanel flow, In either of
these situations one c¢an actually speak of a bulk and & thin film next to the wall where
hest and mass are transferred. The gas entering and flowing between the channel plates
never attains a parabolic velocity profile as Re s > 500 (the minimum and maximum NTU 8
and NTU], of tables 4.2 and 4.3 correspond to gas flow Reynolds numbers ranging from 520
to 1210 and liguid flow Reynolds pumbers ranging from 250 to 300, respectively).

Following Ward—-Smith (1980) fully developed flow ig attained for:
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B
10t - 0.04 Re, . (2.59)
Dy ¢

S0 for Reg > 500 the developing length takes at least 20 Dy g while the length of the gas

channel B, . approximates 19 Dh g gee figure 4.2, Moreover, the droplets on the plates
H

tot
prevent a smooth development of laminar flow and promote transverse mixing in the gas.
All these features of the fiow between the plates might be the reason why the agreement
with the experimental observations is go good,

The suggested fog film model approach to channel flow is less suited for fully
developed laminar chacnel flow of gat mixtures (which is rarely found in engineering
applications), Hayashi ef al. (1981) observed a superheated core in the presence of a fogging

layer next t0 the wall, These regions were observed in mixtures of wall condensing

water—vapour and air flowing between parallel plates.
84.7 Concluding remarks

Two—dimensional crossflow models have been presented which degcribe the heat transfer in
gas—liquid compact heat exchangers. These models involve heat transfer without
condensation, pure steam condensation, and condensation and fog formation in the presence
of non—condensables. Both the convemtional film model of chapter 1 and the fog film
models of chapter 2 and 3 have been employed to predict heat and mass transfer. Mixing
rules have been derived and used to determine the equilibrium state of the gas after the
heat exchanger, possibly resnlting in fog formation or dissolution. These general rules can
be applied to all practical cases where gas flows are mixed and the mixture's vapounr and
droplet phage are not in equilibrium,

Numerous heat transfer cornputations of varvious air water—vapour mixtures revealed

that the compound fog film model of chapter 3 produces identical results to those of the
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asymptotic fog film model of chapter 2, but that the required computational time of the
latter is twice as long. The entire investigation fyrther revealed that the governing
equations of all physical sitnations can be solved within very short calculational time.
Hence the presented models and solution procedures are well execatable on a PC.

In the case of condensation the results indicated that a conmsiderable part of the
initial vapour flow remaing as ¢ondensate in the heat exchanger; this is due to the compact
geometry of channel plates and heat exchanger. The amount of formed bulk fog is found to
be very modest for the selected conditions, and can be verified qualitatively only. The heat
transfer to the primary liquid is ot affected by fog formation, which was already predicted
it chapters 2 and 3. A typical result is that, except for small air fractions, the interface
temperature of the film is 10t uniform and dependent on the location in the heat
exchanger.

The theoretical predictions have been compared with experimental data obtained
with a PVDE heat exchanger. The entry liquid temperature t'l,in was about 20°C and ¢ gin
varied from 60°C to 100°C; the entry vapour mass fraction %n ranged from zero up to and
0.40, For tg,in 0] SDQC. and tg,in & 100°C, fog formation is not predicied and not observed.
For byin & 60°C fog formation ie predicted and indeed observed. The observations suggest
the correctness of the proposed application of the fog film model to channel flow. Probably
this qualitative agreement is due to the type of gas flow hetween the plates: developing
forced convective laminar flow.

The condengation model isgues from the approximation that the effect of the water
condensate film on heat transfer can be disregarded so that the process of heat and mass
transfer iz driven by the difference between the liquid temperature in the plate and the
gas—condensate interface temperature and is not affected by condensate production and
flow along the plate. The co— and countercurrent condensation experiments illustrate that
this simplification results in an slight overestimation of the heat exchanger's performance,

in particular when ¢y dnd —dropwise— condensation rate rise (it should be noted that this
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dropwise condensation i8 in conttast to the assumption of flmwise condensation). However,
for a heat exchanger operating in crosscurrent condemsation and cocurrent gas flow the
effect of the condensate will be reduced.

I an crder of magnitude analysis for ancther vapour than water also yields the
conclusion that the effect of the condensate is small, the presented model can be applied
directly to the condensation of that particular vapour, Moreover, though attention was
focussed on plastic heat exchangers, the analysis can very well form the basis for modelling
the heat transfer in other Lypes of crossflow heat exchangers. One only needs to know the

geometry, and periaining Nusselt number correlations, of both fluid channels.
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5. FILM CONDENSATION OF A PUKE VAPOUR
ON NON-ISOTHERMAL VERTICAL PLATES

§5.1 Introduction

In appendix E it has been assessed that the water condensate film on the plastic channel
plate can be considered as isothermal. Moreover, it was demonstrated that the exerted
friction on the film and the pressure drop in the gas channel are very small. In other words,
the condensate flows approximately as a free falling film in the direction of gravity, For
pure vapours other than water however, the heat resistance of the condensate is, in
comparigon with the plastic channel plate, in general not negligible. Accordingly, in this
chapter the heat transfer from a pure vapour to 2 ¢ooled channel plate is analyzed. The

condensing vapour is assumed to be saturated, which is to say t parrow and

gin = ‘st 3
Bckert (1961) demonstrated theoretically that the effect of superheating on the
condensation process is only of minor importance.

Condensation of pure saturated wvapours on vertical flat plates has often been
examined in the past. Several extensions and improvements have been proposed to the
original analysis of Nugselt (1916). Bromley (1952) and Rohsenow (1856) included the heat
capacity of the condensate, Sparrow and Gregg (1959) extended this analysis to include the
inertia of the condensate, and Koh et ol (1961) analyzed additionally the effect of vapour
drag. Chen (1961), Kok (1861), and Churchill (1986) derived approximate solutions,
accounting for the afore—said effecis. However, all condensation problems analyzed thus far
have —to the author’s knowledge— been limited to isothermal plates. Temperature rises of
the cogling liquid as a result of liberated latent heat are neglected. Such temperature mises
and their interaction with the condengation process are considered to be important and

typical of channel plates.
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In this chapter condensation on channel plaies is studied both theoretically and
experimentally, Taken into account are conduction and convection in the plate, heat
transfer in the condensate, and their interactions. Three types of configuration are
examined, namely the flow of the condensate under the action of gravity in the direction of
the liquid flow, called cocurzent, in oppogite direction, called comntercurrent and
perpendicular to the liquid flow, called crogscurrent condensation. It is assumed that both
the lguid and condensate flow are ynmixed, and that the physical properties of both fluids
are constant. It is furthermore assumed that the condensate forms a laminar non—tippling
film on the plate, though it has been recognized in literature, e.g. by V.D.I. (1088), that
surface waves appreciably enhance the beat transfer. More information about this
phenomenon can be found in the recent article of Uasal {1088), in which the classical
Nusgelt model is extended with the effect of surface waves.

The governing equations of the three afore-said processes will be derived, made
dimensionless, and analytical solutions of these non-linear equations will be provided. It is
shown that the processes are governed by two dimensionless groups: the McAdam number
Ad, and the number of transfer units NTU. Based on the analytical solutions and an
asymptotic analysis, there is derived an approximate result that is compact and accurate
for most practical values of these dimensionless groups characterizing the processes.
Furthermoze, pure steamn condensation experiments are carried out on brass and PVDF

channel plaies to validate the presented models.
§5.2 Formulation of basic equations
Crosscurrent operation

First, the equatioms of the crosscurrent condensation process will be mathematically

formulated, because this is the most general case. The equations of the other sifuations can
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easily be derived from the equations for this process. The lquid flowing through the
channels has an inlet temperature tl,in’ which is lower than the saturation temperature boat
of the vapour, se¢ fgure 5.1. For the channel plate, an energy balance for an element dxdz
involves condyction and convection heat flows within the plate and ap inflow of heat from

the condensate. This energy balance can be written as:

Mepa Fy_

9B & htot (tsat_tl) : (6:1)

in which htot ig defined ag the overall heat transfer coefficient of the condensate and the

plate. The factor two on the left hand side accounts for the heat transfer on both sides of

s

the plate,

Yin

NANN

Fignre 5.1 Crosscurrent condensation.

The heat transfer eoefficient h, ., consisis of three parts:

m!'_=1_+1_+_,1,. , (5.2)
b‘tot hcon Ew El
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Note that in this chapter b, . is defined otherwise than in the previous chapter. The heat

tot
transfer from vapour to flm does not appear in the analysis because the vapour is
saturated, and thus has the same temperature as the condensate surface. The heat transfer

coefficient b, . of the condensate, and correlated b, ., are functions of both x and 2:

k
__con
By = —2 (5.3)

5(‘.01&

in which k. is the thermal conductivity of the condensate and é.op(®2) the film
thickness. The contribution of subcooling of the condemsate (ie cooling below the
saturation temperature) is meglecied becaunse the Kutateladze number Ku, of the
relevant condensates is small, e.g. see appendix E for the almost isothermal water film on
the plastic channel plate. Braomley (1952), Rohsenow (1956) and Sparrow and (Gregg (1959)
demonstrated that for small Kuiateladze numbers convection plays a secondary role
becanse the film is 80 thin. The heat transfer coefficient Hw in equatiorn (5.2) stands for the

conduction through the walls of the plate and is defined by:

=¥ (5.4)

where d4 denctes the wall thickness, see figure 4.2, For plastic channel plates the mean
forced convection heat transfer coefficient By in equation (5.2) follows from equation (4.4)
and takes the convective heat transfer in the channels into account. For metal channel
plates the Nusselt number should be multiplied by a factor two to account for the heat
transfer through the intermediate walls in the plate, which act as extra heat tranaferring

surfaces, and the Sieder and Tate correction should be included:



169
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Py 4011
1 = ] (5'5)
b, , |Pr (d,+d,) N

Prl,

h,1 Lw

se¢ figure 4.2, In this equation the Sieder and Tate correction appears, see V.D.I. (1988),
which plays a role of importance for metal channel plates. In the case of fully developed
channel flow the mean Nusselt number Nﬁ“! ig identical to the local Nusselt number.

The boundary condition on El reads:
'El(x, z=0) = tl,in . (5.8)

In ¢rder to obtain an equation describing Econ(x,z), attention i3 paid to the
condensate flm. In the momentum eqnation in the x—direction the inertia terms can be
neglected; Sparrow and Gregg (1959) demonstrated that for Prandtl numbers Pr  of the
condensate greater than unity these terms may be neglected. The buoyancy force exerted
by the vapour on the film can aleo be neglecied, becanse usually o /o, s small In
appendix E one can see that for water Prcon is larger and pv/pco " much smaller than

unity. The momentum equation in the x—direction then reads:

oy

_v—w—vn_m
Teon Byt = PonnB (5.7)

In this equation the pressure drop term has not been retaived because it is small or even

absent, see appendix E. The boundary conditions on v, aze:

Uopgr=0) =0, (58)
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=0 . (5.9)

In appendix E it is derived that the exerted friction by flowing gas is small or zero,
depending on the orientation of the gas flow towards gravity, and 13 therefore not
mentioned here. Furthermore, Koh (1961) and Koh ef ol (1961) demonstrated that for
small Ky the drag of the quiescent vapour on the flowing film can be neglected as well,
50 the zero shear boundary condition is appropriate. Integration of equation (5.7) with

respect to v and application of equations (5.8) and (5.9) yields:
Peond 2
ucon(x:Y:z) = u;]:o'-n- (yé.con - %y ) * (5'10)

Using the equation of conservation of mass (ﬂvcon/ﬁy = —&umnlé‘x), the velocity

vcon(x’y’z) perpendicular to the plate can be determined as:

é)VCOER - _ pCO!'lgy aécon (5_11)

dy Teon 8«

subject to the boundary condition:
Veon@=0) =0 . (5.12)

By integration of equation (5.11) with respect to y and application of equation (5.12) one
finds that:

2
'aCOI).gy 860011

. (5.13)

A (XIY)Z) =-
con gncon
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The amount of condensate m passing through an element of area dx at y = 4., i8

governed by:
a8
s con
M= 2n0n (uoon P vcon) y=0 ) (5.14)
con
see figure 5.2,
aacﬂl’l
pCOﬂ“COl'\ ax
“Poon"eon
o
“3 —
Fson T8 Eenn boom
dx x

Figure 5.2 Vapour flux into condensate film.

Substitution of equations (5.10) and (5.13) into equation (5.14) produces:
o CeonB 5 Peon " (5.15)

The amount of liberated heat is the product of the mass flow into the filme and latent heat

B this liberated latent heat is equal to the heat transported to the liquid:

2
Peon®at P 0o

CLNPYE bt (tsat - T"l) ’ (5.16)

17(:0]1
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subject to the boundary condition:

Soon{®=0)=10 . (5.17)

In the energy balance (5.16) the subcooling of the condensate has been neglected implicitly,
this is only allowed for small Ku con- The non—linear partial differential equations (5.1) and
(5.18), conpled by equations (5.2) and (5.3), and boundary conditions (5.6) and (5.17)
tepresent the governing equations of the crosscurrent condensation process.

Countergurrent operation

Next, the countercurrent process is considered, which is depicted in figure 5.3.

P

|
|
|
|
S
I-_--___"""—-——.

tl,ir\ I

Figure 5.3 Countercurrent process.
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The equations describing this process can easily be derived from the equations of the

CIOBSCUTTENT PIOCESS as:

we_ ., di
pl _
~hygt (tsa.t tl) !

P

= 5.18
2B ds (18]

and:

2 ‘
PronBE1at & 48 on —h, (. —T) . (5.19)
Teon con 4y tot ‘'sat 1

Note that Fl and ﬁcon are functions of z only. The boundary conditions become:

Rt =ty > (5-20)
and for equation {5.19):

Bpop(z=0)=0 . (5.21)
Coctrrent operation

The equnations describing the cocurrent process, see figure 5.4, become:

_2§L o Riot (tsat = 1) (6.22)
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z

Peon®at 2 d6c0n=h (5. —

Neon con 4. tot “satb
‘I,inl

[

S (5.23)

%

i
!

Figure 5.4 Cocurrent process.

The boundary conditions of equations (5.22) and (5.23) read:

Hla=0) =ty 5, (5.24)

and:
(z=0)=0 . (5.25)

60011

Faghri and Sparrow (1980) derived similar equations, and integrated them numerically, for
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co— and countercutrent condensation on a vertical circular tube. The analysis of these
equations presented in the following sections ¢an, therefore, right away be applied to both

the afore—said processes and pertaining eqnations.

§5.3 Solutions in closed form

In this section the previously derived differential equations will be set dimensionless and
golved in closed form. Dimensionless variables and groups are introduced and defined, and
it will be demonsgirated that such groups entirely characterize the processes. The three
configurations will be treated in a sequence opposite to that employed in the previous

section.

Cocurrent process

Equations (5.22) and (5.23), with application of equations (4.2), (4.5), (5.2) and (5.3), can

be written in dimensionless form ag:

41 yayrNTO¢=0 (5.26)
dz :
AZ(1 + A) :—;“-—Adlc =0, (5.27)
where:
t.., —F
¢=—:t 1 (5.28)
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6 K
A= -conpl (5.20)
kCC)IIII.
2k BL
NTU = 2L (5.30)
W,
1p, 1
BAm Bt .— t: )
Ad1= pl cc;n sa.ts Lin , (5.31)
Pconﬁlatkcong
and with boundary conditions:
f(Z=0) =1 , (5.32)
A(Z=0)=0 |, (5.33)

The number of transfer units NTU is inversely proporticnal to the liquid capacity flow
through the plate and Ad1 is the ratio, to the fourth power, of the total heat transfer
coefficient of the plate and the heat transfer coefficient of the condensate film. Note that ¢
and NTU are defined otherwise here than in the previous chapter. By adding equations
(5.26) and (5.27), integrating with respect to Z, and applying equations (5.32) and (3.33},

the following relation for A and £ can be cbtained:

¢=_NIU Axy | (5.34)
3Ad,

Equation (5.34) is substituted in equation (5.26) and integrated to give:



177

1
3Ad
Ln{p® +1) - [FUI] [3P—Lﬁ{P+ 1) +4 Ln(p®—p + 1)

5 . (5.35)
-3 arctan(vgp—vg)] =-NIUZ+K, ,
where:
1
p={(¢{=1) . (5.36)
By application of boundary condition (5.32) K, is obtained:
- (3hdp?
K, =T [_] ‘ (5.37)

NTU

Values of {(Z=1) = ¢, and hence for the ontlet temperature of the liquid, can be
determined iteratively with equations (5.35)—(5.37) for any given NTU and Ad,. Note that
1 - ';out represents what is sometimes called the heat exchanger effectiveness. The

maxitmum possible exit temperature, fl(X#I) =1, corresponds with {_ , = 0.

at’

Countercurrent process

Equations (5.18) and (5.19) of the countercurremt process are set dimensionless by

introducing equations (4.2), (4.5), (5.2}, (5.8) and (5.28)—(5.31):

.14 - - 38
dZ(1+A) NTU¢=0 , (5.38)
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A1+ A) 3—‘;—~ Adi¢=0 (5.39)

and equations (5.20) and (5.21) become:
(Z=1)=1 , (5.40)
A(Z=0) =0 . (5.41)

BEquations (5.38) and (5.39) are added, then integrated with respect to Z, and equations

(5.40) and (5.41) are applied, yielding:

£ = % A+ ((Z=0) . (5.42)
1

Using equation (5.42) to eliminate A in equation (5.38) and integrating the resulting
equation with respect to Z vields:

3Ad, 1
Lnfp® +1) + [ g(zzo)] [Sp = Lu{p + 1) +
NTU
9 1 (5.43)
§ In(p? —p + 1) = 43 arcian(Zg p "75)] =NTUZ+K,
where:
¢ t
D= [C(Z=o)_1] . (5.44)

By substituting ¢(Z=0) into equation (5.43):
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SAd, . t

K, =38 [W g(z=0)] . (5.45)

The unknown ({Z=0) = gou
iteration of equations {5.43)—(5.45).

¢ can be evaluated for any NTU and Ad, by numerical

Crossenrrent process

The crosscurrent equations, equations (5.1) and (5.16), are set dimensionless by equations

(4.1), (4.2), (4.5), (5.2), (5.3) and (5.28)-(5.30) and:

4 -
ady = eon® ™ ) (5.46)
Hjatk

Y 3
pch (‘:(.‘r_llg

The number Ad2 hag the same physical meaning as Ad,, but this McAdam number

containg B as flow—off length. The equations become:

K14+ A)+NTU (=0 , (5.47)

o

A1+ A)PB _pq =0 . 5.48
( )ax ¢ (5.48)

The bourdary conditions of these coupled partial differential equations are:

(X, 2=0)=1 , (5.49)
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A(X=0,2) =0 . (5.50)

To solve the above non-linear problem the following procedure will be employed. Instead

of {(X, Z) the mean temperature ((X, Z) will be determined, defined as:

X
W= [ axzax . (5.51)
0

Combining equations (5.18), (5.50) and (5.51} yields:

1
T=——A1+§0) . (5.52)
3Ad,

Integrating equation (5.47) with respect to X and substitution of equation (5.51):

X
I Ny J b g% . (5.53)
on o 1+ A

Combining equatione (5.48) and (5.53):
3Ad, & _NTU At , (5.54)
az

and equations (5.52) and (5.54) produce:
3(1+%) A =—NTU 02 . (5.55)

Integrating equation {5.55):
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3LnA + 34 = — 7 NTU + Ky(X) . (5.56)

The integration function K3(X) can be determined by combination of equations (5.48) and
(5.49):

AYZ=0) (1 + §A(2=0)) = 3Ad.X . (5.57)
Equations (5.56) and (5.57) yield:
3LnA = 3LnA(Z=0) + 3A — 3A(Z2=0) = - Z NTU . (5.58)

For any NTU and Ad, it is possible to determine UX=1, 2=1) = let by successive

numerical iteration of the analytically obtained equations (5.57) and (5.58), and relation
(5.52).

Condensate production and Reynolds number

An important ynknown is the amount of energy transferred and condensate produced per

unit time. The simplest way to determine it is to employ an overall energy balance:

¥oonBlat = ¥1%1 ('tl,out - tl,i]l) ' (5.59)
wheze Woon represents the total mass flow of vapour to both films. In the employed energy
balance the subcooling of the condensate is neglecied again, which is allowed for small
Ku,,’s. Equation (5.59) is set dimensionless by applying equations (5.28), (5.30) and:
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w___H,.
an = : con lat . (560)
2BLA ) (44 44~ f1n)

Equation (5.59) becomes:

1 —
Mooy = o Cout . (5.61)
" NTU
Here, (., follows from equations (5.35)—{(5.37) for the cocurrent process, from equations

(5.43)~(5.45) for the counterenrrent process, and from equations (5.52), (5.57) and (5.58)
for the crosscurrent process.
The Reynolds number of the condensate is defined as:

. & p
Re = tonconfeon (5.62)
on Teon

ang i at most where the condensate leaves the plate. For the co— and conntercurrent

process a global mass balance of vapour entering the condensate films and condensate

flowing off the plate and leaving the films yields:

w
LB (5.63)

277001113

Recon ¢

For crosscurrent condensaiion the Reynolds number of the offflowing condensate varies
with z. That is to say, with the distance from the entry of the coolant, see figure 5.1. The
maximum condensate production and Reynolds number is found at z=(. In appendix E,
equation (F.1), an expression for the maximnm Jocal mass flux th is derived. A global mass

balance and substitution of equation (E.1) yields as maximum Reynolds number for the
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CTOSSCUITENL PIOCESS:

_ E1)1(';58.?. - 1;cém,w)B < E1‘:)1(tsat - tl,in)B

con ) (5.64)

Hlat Toon Hlat Teon

since the channel plate/condensate interface temperature t, is greater than ¢, . .
con,w l,in

1 Y A L [ A

NTU = 1/§ __’_______,___—————_—,—.

- NTU =174

0.6

1070 we wl . 1 BT 10?

Figure 5.5 Variation of ¢ . with Ad, for the cocurrent process.

According to V.D.I. (1988) the condemsate fitm is in the laminar flow regime for

095
R'econprcon < 640.
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§5.4 Nnmerical evaluation

In the previous sections the poverning equations for the three relevant process
configurations were formulated, non—dimensionalized and solved. Implicit algebraic

relations were obtained between ¢

out’ the numbers NTU and Adl or Adg. In this section

results will be presented of numerical caleulations of (. for several values of NTU and

Adl or Adg.

I} A i t A '

NTU =174

<'JLN

0.5

Adl

e W 2 10! 1 10 10

Figure 5.6 Variation of ¢ out With Adl for the countercurrent process.

Values of Ad; ranging between 10~* and 102 are substituted into equations (5.35)5.37)
and (5.43)—(5.45), while NTU is set equal to 2, 1, 0.25 and 0.125. These ranges of NTU and
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Ad, exiend well beyond most current practical applications. In figures 5.5 and 5.6 the

Herated ¢ . is plotted against Ad,, for the co— and courtercurrent process, respectively.
The exit temperatures of the countercnrrent process are somewhat higher than the

exit temperatures of the cocurrent process, in particular for high NTU, but the difference i3

very small. It should be borne in mind that a higher ¢ implies a lower exit temperature,

out
ses equation (5.28),

1 M A M A a

NTU = 1/4

tb\.ll

0.5

1w fliad i 1wt 1 10 10
Figure 5.7 Variation of { ot with Ad2 for the crosscurrent process.

To caleulate (. for the crosscurrent case, equations (5.52), (5.57) and (5.58) are

successively iterated afler substituting values for NTU = 2, 1, 0.25 and 0.125, while Ad2

—4

varies between 107 and 102 Tn figure 5.7, (, , is depicted against Ad,. It is striking that
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figures B.5—5.7 almost coincide when Au:l1 = Adz, that is when length and width of the
plate are equal. Thig implies that, if L = B, the orientation of the plate towards gravity is

nat important anymore.

<uul

SOCULLENE PIOCHTD

.5 . countercurrent process
—————  rosscurrent process
— . approximation (5.78)

o PVDF plate experiments

+  brasa plale expariments

Figure 5.8 Variation of (‘.out with NTU™ for the co—, counter—, and crosscurrent

process, according to approximation (5.78) and experiments.

Farthermore, it can be concluded that for values of L/B > 1 (because of the application of
¢hannel plates this i often the case in plastic heat exchangers) crosscurrent ¢ondensation
will lead to higher take—off temperatures of the ligquid and higher condensate productions.
This might be expected because the flow—off lengih of the condensate is shorter. For

reagons of brevity the dimensionless variable Ad is introduced, Ad stands for Arjll for co—
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and countercurrent condensation, see equation (5.31), and Ad stands for Ad, for

crosscurrent condensation, see equation (5.46).

Next the exit temperatures for the three processes are calenlated for Ad = 10"4,

1672, 1, and 102, while NTU L is varied between 0 and 10. In figure 5.8, (. . is drawn

ot
versus NTU ™ Aggin it i obvious that for Adl = Ad, the exit temperatures are almost

the same. Tt also shows that the aexit temperatures tend to zero, for all Ad's, when the

Hquid flow is neasly zero. Hence, the exit temperatures are equal to boat and decrease

when the liquid flow increases.

1
8 % 4 2 =
o <
Ad=0 5 Ad = 107
M0 Ad =072
*
-
+ — —  coturrenl process
* e
A * e
+ e i e EOUALETEUITENE process
Ad=1"
.5
i m— EroBCUTIEN Procods
A= 102 ————— apptoziination {5.78)
p——
¢ PVDF plale experiments
+  brass plate expetimenta NTU
Adam
1]
8 5 10

Figure 5.9 Variation of M con Wih NTU L for the ¢o—, counter—, and crosscurrent

process, according t6 approximation (5.78) and experiments.
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Figure 5.8 confixms the expecied irend with the exit temperatures for large Ad decreasing
more strongly when the liquid flow increages. For large Ad the heat transfer resistance of
the film is important when compared with that of the plate. 50, when the ligquid flow
increases the thicker condensate film, for large Ad, will considerably affect the exit
temperature. For small Ad, on the contrary, the thickness and heat transfer resistance of
the condengate flm are of minor importance, even when the liquid flow and condensate
production increase,

In figure 5.9 the dimensionless mass transfer an is plotted against NTU ™ for the
same values of Ad as is done in the previous figure, using equation (5.61). For small values
of NTU“l, increaging the liguid How results in increasing condensation rates, although the
exit temperature decreases. But a further increase of the flow, however, will ot lead to any
significant increase of the condensate production and enengy transfer. Both the liguid flow
and the plate area have to be increased to achieve higher condensate productionms, see

equations (5.30), (5.60) and (5.61).
§5.5 Asymptotic analysis and approximation solution

When attention is paid to figures 5.5-5.7, the supposition ariges that there are limiting
values of Qout for large and small Ad’s. This supposition is examined in gome detail for the
crosscurTent, process, using asymptotic methods, see Van Dyke (1875). This analysis forms
the basis of an approximate solution, which will be introduced at the end of this section.

Small valnes of Ad imply a poor heat iransfer coefficient of the plate and a good
heat transfer coefficient of the condensate, see equaiions (5.31) and (5.46), whereas the
inverse is true of large values of Ad. For intermediate Ad’s, the heat transfer coefficients of
plate and condensate film are of about the same mapgnitude.

For small values of Ad,, which may occur when steam condenses on a plastic

channel plate, the following perturbation expansions can be applied:
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(KE) = ((X,2) + Ofe) (5.65)

A(XZ) = € (A(X,Z) + Ofe)) (5.66)
where:

e=(3,nﬁc12)é , (5.67)

Substituting equations (5.85)—(5.67) into equations (5.47) and (5.48), equating the
coefficients of equal power of € and solving the resulting equations for the zero—order terms
yield:

=0T (5.68)

1

A= (X e NTUHT (5.69)

Applying equation (5.51) gives:

=T(X=1,2=1) = ¢ NTU

Cont = (5.70)

This zero—order solution sngpests that for small Ad2 the heat transfer coefficient of the
condensate film is megligibly large compared with the heat transfer coefficient Epl of the
channel plate. The film on the plaie can be considered to be isothermal and its presence
disregarded. In figures 5.8 and 5.9 the zero—order solution has been drawn.

For large values of Ady, e.g. when isopropancl or toluene condenses on a metal
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channel plate, the perturbation expansions:

(XB) = ((X,2) + O(e) (5.11)

ARXE) =L (A,(%,2) + O(9) (5.72)
where:

€= (3Ad2)_i , (5.73)

van be applied. Equations (5.71)—(5.73) are substituted into egquations (5.47) and (5.48).
Equating coefficients of equal power of ¢ and solving the resulting equations for the

zero—order terms yield:

=1, {5.74)

A= (%‘X)Ti : (5.75)
Application of equation (5.51) gives:

Cout = CoX=1,2Z=1) =1 . (5.76)
The zero—order solutions (5.74) and (5.75) represent —in dimensionlesy form— the classical
Nusselt type condensation on an isothermal plate with temperature "l,in‘ In figures 5.8 and

5.9 this zero—order solution is depicted. An analogons reflection of the equations (5.26) and

(5.27) from the cocurrent process, and (5.38) and (5.39) from the countercurrent process,
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for lazge and small Ad,, yields the same limiting values for Cout and the same physical
interpretations.

The asymptotic analyses for large and small Ad’s indicate that { ., is sitnated
between the line pertaining to Ad = 0, represented by squation (5.70), and Ad = o,
represented by equation (5.76):

cNTU bt S (5.77)

This implies graphically that in figures 5.8 and 5.9 the situation of and M

out con’

respectively, is bounded by both limiting cases. These lines have been depicted in both
fignres.

The drawn lines, plotted in fignres 5.8 and 5.9, represent an approxdmate solution of
{he broken lines, which are the solutions in closed form. The approximate function is based
on the knowledge of the ssymptotic behaviour of ot for large and small Ad’s, which is
the same for the three processes, and figures 5.5-5.9 for intermediate Ad’s. This

gpprocamation of Cout is an explicit function of NTU and Ad:

NTU

NIy g 2 ]
NTU

e 2 4 (0.85AQ)%

Cout = +1 . (5.78)

Equation (5.78) tends to the limiting values of (o for large and small Ad’s, and matches
these valnes properly for intermediate Ad’s. Furthermore, Caut tends to zero when the
liquid flow tends to zero, independent of Ad, and tends to unity when the liguid flow tends
to infinity. These physical properties are both essential to the processes and also satisfied
by equation (5.78). The amonnt of condensate production can be evalvated with equation
(5.61). '
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§5.6 Experiments

In the past pure vapour condensation experiments on. isothermal plates have been reported,
e.g. steam condensation by Slegers and Seban {1970) and Ratiani and Shekriladze {1964),
to validate the Nusselt condensation model. These efforts were limited to experiments on
ispthermal plates, thus only verifying the special case Ad = m. Accordingly, pure steam
condengation experiments with other Ad values have been carried out, the results of these

experiments are discussed in this section.

Apparatus

The low pressure steawn used is supplied by the central boiler—house. The water is degassed

before boiling and consequently is not expected to contain any non—condensables,

Figure 5,10 Tested PVDF channel plates.
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The stearn haz an shsolute pressure P‘7 of 2.25 bar, witk a pertaining saturation

temperature t,_, of 124°C, and is a little superheated; t_. = 135°C. This degree of

aat in
guperheat is however insignificant, e.g. see Sparrow and Ecgk:a:rt (1961) or Minkowycz and
Sparrow (1966), and the steam can therefore be considered as saturated. The steam eniers
a cylindrical chamber with thick (20 mm) PVDF walls to condense on four parallel channel
plates, see figure 5.10. The distance between the plates is such that interactions between
the condensafion processes on the separate plates are excluded. The entire test chamber is
thermally insulated vﬁth plastic foam to avoid undesired heat transfer. The entering
coolant, water, has during the experiments sn inlet temperature tl,in of about 11°C. The

varicus temperatures of test rig are measnred with laboratory mercury thermometers, and

the coolant flow with calibrated Jow meters.

FVDF " brass
B, (mm) 402 40
4 (mm) 14 3.4
4, (mm) 16 3.4
dy (mm) 04 0.6
4 (mm) 03 0.3
de (mm) 40 40
ds (mm) 20 40
K, (W/mK) 0.19 85
R, (W/mK) 633.3 28.3 10*

Table 5.1 Proparties and dimensions of tested channel plates (see figure 4.2).

At the start of the experiments, the condensate in the connection tubes was removed by

blowing through steam. By injecting steam, with zerc coclant flow, the air present was
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driven ont of the test chamber through a venting hole in the bottom.

In order to create two different McAdam numbers PVDF and brass (DIN Ms 63)
channel plates have been tested. Because of the poor thermal conductivity of PVDFE the
pertaining Ad will be small. The difference with the larger Ad of the brags plate is
furthermore increased by adapting the orientation of the rig with respect to the vertical:
the vapour condenses cocurrentwise on the brass plates and crosscurrentwise on the PVDF
plates. In table 5.1 the ditnensions of both set—ups are sted. The NTU is simply varied by

adjustment of the liquid mass flow through the plates.
Results

To chtain N’].‘U_1 and Ad the physical properties of both fluids have to be determined. As
these properties depend on temperature, the proper reference terperatures have to

calculated.

t
vl

)

COm, W

L]
lw N
)

i

T

Figure 5.11 Heat transfer from vapour—condensgate surface to coolant.

In both characterizing dimensionless groups le appears, defined by equation (4.5). The
heat transfer coefficient EW of the walls follows from equation (5.4) and is listed in table

5.1. The heat transfer coefficient from channel plaie to coolant follows from equations {4.4)
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and (5.5) for the plastic and brass channel plates, respectively. In this chapter the
correlation of Dennis e el (1959) is employed for the average laminar convective flow
Nugselt number, &% in both plates the flow rémaing in the lamunar flow regime. This
correlation only acecounts for the effect of the thermal entry length, not the hydrodynamic.
Neti and Eichhorn (1983) demonsirated numerically that the hydrodynamic development
region has little effect for Prl > 6and RelP:IDh,l’lL < 120, As these conditions are satisfied
in the teated chammel plates, the correlation of Dennis ef ol (1959) can be used. The
physical properties of the coolant are evaluated at:

* t. - + t
ty = Lin * Mout (5.79)

2 ¥
as suggested by V.D.I (1988).
To calculate the ¢oolant Prandtl number at the brass wall, Prl w the temperature
at the wall needs to be known, see equation (5.5). This temperature follows from the energy

balance:

*

* * *
EW (tcon,w - tl,w) = El (tl,w - tl) ) (5.80)

gee fipure 5.11, The mean wall reference temperature is derived from equation (5.80) as:

* *
¥ tcv:)n WHW + tlﬁl
b = w11 (5.81)
v by + 1

*
The mean reference-interface temperature ¢, - at condensate—plate surface follows from
)

the energy balance:
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+ * *
Epl (tcon,w - tl) = Econ (tsat - tcon,w) ' (5.82)

This equation is rewritten to obtain as reference temperature:

*
t"‘ =Hc0ntsat + Epltl (5.83)
¢on,w H + H !

con pl

The mean heat transfer coefficient of the Nusselt condensation model is given by Bird ¢ al.

(1960) as:

4 émH 1 atk

Beon =1
AN oq(l o1 B)(t

3
con® (5.84)

L]
sat t‘con,w)

For co— and countercurrent condensation L should be used in equation (5.84), while for
crosscurrent condensation B should be used, corresponding with the flow—off lengths of the
processes concerned. Following Minkowycz and Sparrow (1966), the properties of the water

condensate are evaluated at reference temperature:

= tsa.t Con,w (5.85)

t
con 3 !

except Hlat’ which is evaluated at tsat' To determine El and k the reference

con’
*

*
temperatures tl,W and tcon,w

have to be known to determine the physical properties of
both fluids. These heat transfer coefficients, howevet, depend on the physical properties. A

successive substitution method is used to determine the matching By, k and

*
con’ U1 W

* * L ] . L -
tcon,w The boon,w determingd in this way is furthermore wsed t¢ ¢valuate the physical

properties of the condensate fguring in Ad, see equations (5.31), (5.46) and (5.85).
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In figures 5.8 and 5.9 the results of the experiments on brass and PVDF plate are
depicted as a function NTU™L. The largest NTU™L of the PVDF plate corresponds 10 R
= 993 and R.ecwPrg('”‘:.*5 = 13; consequently, both fluids are in the laminar flow regime.
The Ad of the PVDF experiments increased with rising NTU ™ from 0.8 10 to 1.1 107>,
This mingr variation ig due to the poor hest transfer coefficient of the plastic walls {see
table 5.1): though the heat tramsfer from. coolant to wall is enhanced by larger mass flows,
entry effects cause a by range from 1800 W/m’K to 1900 W/m’K, le and Ad rémain
dominated by HWY Figures 58 and 5.9 illustrate the excellent agreement between
experiment and the theory, which predicted almost no influence of the formed condensate
on heat transfer for small values of Ad.

In both figures the experimental results of the condensation on the brass plate are
also drawn as a fonction of NTU L. The largest NTU lin these plots, NTU™ = 3.2,
corresponds to Rey = 2218 and ReconPr&’);‘s = 209. During the experiments E; increased
from 1300 W/m®K to 2800 W/m?K with increasing NTU”I, owing to entry effects. As Ty
dominates le, see table 5.1, le and Ad are nearly enhanced to the same extent s El’ Ad
increased from 0,29 1072 to 8.4 102 with increasing coolant flow.

Figures 5.8 and 5.9 illusirate the depariure from theory for very small and large
NTU L. The discrepancy for very small NTU L is atiributed to the contribution of
unavoidable leakage heat flows to the coolant in the brass plate. Accordingly, too high exit
temperatures are measured. Some Cout are even situated below the curve pertaining to Ad
= 0, whick is physically impossible. Beyond NTU_1 = 1 the experimental exit
temperatures are situated between the curves Ad = 0 and Ad = 10_2, and are thus in
agreement with the theoretical prediction. However, for NTU ! > 2 the experimental ¢

out
intersects the curve Ad = 1072 and tends to approach the curve Ad = 0, though the
experimental Ad approximates 8.4 1072, This implies that the measured value of th is
smaller than predicted, that is to say, the calculated exit temperature is too low. The heat

transfer from vapour to coolant is apparently betier than predicted by theory. Two possible
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departures from the ideal model conditions are:
— ripples on the condensate surface,
— dropwise condensation,
— forced vapour flow in the test chamber.
In literature the appearance of ripples is often guoted as major explanation for the Nusselt

condensation model underpredicting the heat transfer from condenaate to wall.

1 4 A a A

- o Ratiani and Shekriladze {1964) L
—  Kutateludze and Cogonin (1970)
] ——— MNumelt (1916)
finsal (1088)
Fean [ véon]*
¥oon gt
.
1
10 - v T — T v ¥ v
10 0? R 10

Pigure §.12 Condensation heat transfer according to Nusselt (1916), Unsal (1988),
Ratiani and Shekriladze (1064) and Kutateladze and Gogonin (1979).

For all experiments the dimensionless combination 1(11’:0!_‘/1%(:‘3]:l

1
0.1, implying that the results of the model of Unsal (1988) can be applied (Ku

was much smaller than

COH/PICOH 18
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referred to as "F" in this note).

The heat transfer thromgh a condensate film with ripples is compared in this note
with a fitm without ripples; the Nusselt solution. One of the results, relevant here, is that
for 4Re,, = 400, the heat transfer from condensate to plate is angmented by ripples by at
maost a factor 1.5, see figure 5.12 for a comparison with Nusselt’s soluticn. An additional
requirement for this value to be attained is that the dimensioniess surface tension number
{referred to as "N") is smaller than 12,347, For all condensation experiments however, this
number proved to be of order 23,000, so the effect of surface ripples should be less
pronounced.

In figure 5.12 experimental data of Ratiani and Shekriladze (1964) are also shown,
as well as the simple corzection for the effect of waves following Kutateladze and Gogonin

(1979):

®con = Reon' (5.86)

where @ con i a correction factor for the Nusselt condensation heat transfer coefficient

(5.34), and Re ., the maximum Reynolds number of the condensate. Figuwre 3.12
illustraies the fair agreement between the result of the comprehensive analysis of Unsal
(1988), the compact correction smggested by Kutateladze and Gogonin (1979), and
experiments performed by Ratiani and Shekviladze (1364). However, all experimental and
theoretical results indicate that ripples alone canmot accouni for the calculated heat
transfer being too poor. For when Ad is divided by 5, corresponding with the suspected
effect of waves to the fourth power, the calculated exit temperature is still too low,

During the experiments it was not possible to watch the plates and verify whether
film condensation actually occurred. However, the experimental and theoretical results
indicate that the discrepancy between the resulis depends on the coolant mass fow (and

related condensation rate), revealing that the deviation cannot be explained from possible
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dropwise condensation only. Moreover, diopwise condensation is not expected to take
place. This is because the brass plates do not have smooth and clean surfaces ag they are
constructed {rom square channels joined by soldering,

The amount of steam injected in the test chamber and condensed on the plates
increases with higher coclant flow rates. For the PVDF plate the steam flow reaches a
maximum rate of & kg/hr, while for the brass plate the maximam steam mass flow amounts
44 kg/hr, owing to the excellent heat transfer in this plate. Though the steam is injected by
two injectors, provided with many holes directed away from the channel plates, it is
suspected that the condensate films are disturbed, or even blown off the plates, by the
incoming sieam. The effect of forced flow in the tept chamber was also comgidered by
Slegers and Seban (1970) as the most acceptable explanation for their experimental Tesnlts
being 20 % above theory. During their experiments, for that matter, the maximnum amount

of injected steam was only about 1 kg/hr.

§5.7 Conclusions

Based on the assumption of Nusselt type condensation, which has been found to be
consistent in the past for most of the vapours applied, an analysis has been carried out of
the condensalion processes on non—isothermal plates. Three configurations have been
examined and compared: namely cocurrent, countercurrent and crosscurrent condensation.
The governing equations have been derived, analysed and solved. The major results
obtained are given below:
—  the process is governed by the McAdam number and the number of transfer units,
—  for small liquid flows the exit temperature is equal to the saturation temperature,
independent of Ad,
—  for large and small Ad’s, the asymptotic behaviour of the three processes are equal,

—  {for square plates (L = B), the take~off temperatures for all the three situations are
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nearly the same, but if L > B the crosscurrent condensation will result in higher
take—off temperatures and condensation rates,

—  for small values of Ad, the condensate film can be considered isothermal,

~  for large values of Ad, the plate can be considered isothermal, corresponding to
Nusselt condensation on an isothermal plate,

— at certain mass flows, dependent on Ad, a further increase In Hquid flow will not
regult in increasing condensation rates. Ounly an increase in both plate area and
liquid flow will resnlt in higher condensate productions.

With knowledge of the asymptotic behaviour of the governing equations, there has been
consiructed an accurate and compact approximation function for the edt temperature,
valid for all configurations of condensation. Experiments performed on PVDF channel
plates confirm that the predictions of the model are essentially correct. The theoretical
predictions of condensation on brass plates correspond with experiments only in a limited
range of the dimensionless numﬁers. Complete sgreement with theory might have been
obtained if perfect thermal inaulation and quiescent vapour conditions had been more

nearly achieved.
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APPENDIX. A: BASIC EQUATIONS OF THE FILM

In this appendix the induced velocity in a stagmant film, conmsisting of a vapour and
non—condensables, is derived with the continuity equations of both components.
Additionally, on basis of Fick’s law of diffusion and the obtained expression of the induced
velocity, the diffusion equation of the vapour in the film is derived. Furthermore, the
energy equation is derived, including the induced velocity. Both equations are also given
for the case fog is formed in the film. The mass of formed fog per unit volume follows from
combining both equations, which are conpled in the fogging part of the film. An accovnt of
the employed basic conservation laws is found in Merk (1957).

The continuity equation of the non—cordensables in a film reads:

doyvy) 0

= (A1)

In this equation differentials with respect to the coordimates x and z and time T do not
appear, since in the film only vaviations of y are relevant and we are only inferested in
steady situations, see figure 1.1. Integrating equation (A.1}) with respect to y and
application of the boundary condition on the non—condensables' velocity:

v (y=0)=0 , (A.2)

yields as velocity of the non—condensables in the film:

v(r=0 . (A.3)
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Boundary condition (A.2) arises from the fact the wall is impermeable to the
non—condensables.  Solution {A.3) represents physically that the non-—condensable
components are quiescent in the entire film. The continuity equation of the vapour

component reads:

=0 ) A4
3 {a.4)

in the case of no fog formation and:

=K (A.5)

in the case fog is formed. Tn this equation K represents the rate of disappearance of vapour
due to condensation, or fog formation. In a film without fog formation, eg the classical
film, this term is evidently identical to zero; equation (A.4). Fick's equation of the

diffusing vapour component in the direction of y reads:

by vy —vy=— g, (A.8)

where the vapour mags fraction is defined as:

pv pv
v AT
TP T T, (A7)

In cquation (A .6) p, v and D represent the mixture’s density, velocity and binary diffusion
coefficient, respectively. In equation (A.6) only Fickian diffusion is included, diffusion by

pressure or cxiernal forces is absent. In this equation thermo—diffusion, or Soret effect, is
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not analyzed either. For pressures and temperatures found in ordinary heat transfer
devices, the Soret and Dufonr (or diffusion—thermo) effect have commonly been recognized
as second order phenomena. For mixtures of air and wall condensing water--vapour in
particular, Minkowycz and Spartow (1966) demonstrated both theoretically and
experimentally that these effects play no role of importance.

The mixture’s mass flux is related to the mass fluxes of the components by:
PV RN TR =AY (A.8)

wherein equation (A 3) has been substituted. Combining equations (A.6)-(A.8) produces as

induced velocity:

y=oo b de (A.9)
1 - cdy

caused by the diffusion of vapour. The induced veloddty v is negative for suction, eg.
condensation, and positive for injection, e.g. evaporation. Substitution of equations (A.8)

and (A.9) into equations (A.4} and (A.5) yield a5 diffusion squations:

o In(l=¢) o (A.10)

dy?

and:

2
de—L”fi%ﬁ—K , (A.11)
v

respectively. Result (A.10) is employed in chapier 1, see equations (1.2) and (1.3), and
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equation (A.11) in chapter 2, see equation (2.13).
The energy equation, neglecting the Soret and Dufour effect, viscous dissipation,

heat sources or radiation, reads:

dc dt dt d%
. ==, A.12
.0 Cp’v)a—a—-l-pc Va— k 2 ( )

o (e
It is noted thal the first term on the left hand side, due to Ackermann {1937), is not always
included in the literature, though it is in fact of major influence, Substituting equation
(A.9) in equation (A.12) and applying the following relation beiween the specific heat of

the mixture and its composition:

Cp=Clpy (1-¢) Con (A.13)
yiclds:
_ M vded ) d% (A1)
-c a-?a? - dy2 ' ’

With fog formation as internal heat source the energy equation reads:

pIDc
p,v dc dt d?t t
In the case of fog formation equations (A.11} and (A.15) are coupled by relation (2.5). To

determing the amount of produced fog, these equations are combined, yielding:
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Hiat d2La(i - F) . dIn(1 - F)

G 2
oy d i (4.16)
d H
y e _ _lat din{l —F)
v cp,v dt

in this equation Le  represents the modified Lewis number. Result (A.16) is then

substituted in equation (A.15) and equaiion (2.5) applied to produce;

1 4ar°’ 1 d'F
(Le, = 1) |[—— & + Le, —=— &
M [1 —F dt] 1-F di? iy, (49

E dy
Le + lat 1 dF
Voo la vl —pdt

K=pgD

The linearized form of equation (A.17) for smali F, with Le = 1 substituted, corresponds to
the expression (Meq. (7)", K is referred to as "1'3“) of Toor (1971a) for the mass of fog
formation per umit volume. The amount of fog formation is positive definite for Le, 2 1,
since ¢ = F(t) < 1 and the first and second derivaiive of the function F(t) with respect to {
are usually positive, e.g. see appendix C for the saturation line of an air water—vapour
mixture. The feature of K being larger than zero for LeV = ] has been employed implieitly
by Aref'yev and Averkiyev (1979). For Lev < 1, however, the fog formation ¢an become
zeTo or even negative, thus fog formation ends. Mathematically fog formation in the film

ends when the numerator of equation (A.17) becomes zero (or negative):

&)

di

[@]2 +(1-7) YE
dt dt?

Le < H[t) = (A.18)

Differentiating H(t) with respect to t and considering that d*F/dt® > 0 it can be verified
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that dH/dt > 0 and hence H(t) is a monotonically increasing function of t. As example in
appendix C the fog condition function H(t), which depends on the saturation line (i) only,
is drawn for an air water—vapour mixture. To permit K > 0 in a fog fibm Le muat be
larger than the maximum H(t) of the film. Toor (1971b) assumed implicitly that K » 0in
analyzing fog formation of dilute water—vapour in air. This assumption appears 10 be
correct « posteriort, since ch v 0.5 for the mixtures considered and hence H(t) < Le, in
the film, see fignre C.2.

In order to investigate the expiration of K, equation (A.17) is differentiated with

respect to b, equation (A .16) substituted, and rewritten as:

dt, 3
dK _ — ob (a‘i;)
at e, - Hiat dings - )
vy dt
3ol - T - 2 o
[(Levd Linfl 3 F) , o dln(l - F) &"Ln(1 - ), (4.19)
dt dt?
(e Hias azn - F)) o (ge, 40001 = F) | @Ln(l = Flyg
Vo Cpv dt v dt? dt
(3H1at dta(1 - F) , ,din(l — 1»))]
cp,v di? dt

It can be verified, which will not be done here, that the second factor of the right hand side
of equation {A 19) is positive in the fopging region. One can therefore readily conclude that
the sign of dK/dt is opposite to the sign of dt/dy. That is to say, bearing in mind that K >
0, ¥ is greatest at y = 0 for condensation (since dt/dy < € in the film), while the

maximum K is found at y = §, for evaporation (dt/dy = 0).
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APPENDIX B: THE LOCATION OF G(t) WITH RESPECT TO F(1)

Introduction

In chapters 2 and 3 the location of relation (1.50) with respect to the saturation line F(f)
has been examined with slope conditions (2.1) and (2.2) for suction and injection,

respectively, and is illustrated in figure 1.7 (with application of equation (1.49)).

Vapour
mass

Iraction
(b &)

G Gt

|
{t, 5) {har )

- T \j

Temperature
Figure B.1 Incorrect use of equations (2.1) and (2.11).

When these equations predict supersaturation, the border of the saturated region (t ar ca) 18

furthermore detected iteratively with tangency condition (2.11) in combination with
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equation (2.22). In this appendix remarks are made regarding the use of both procedures.
Furthermore, the special case where the bulk properties are saturated is discussed in detail
At the end of this appendix it is demonstrated that the saturated region will never attain

the temperature at which the formed fog per unit volume becomes zero.

Vapour
ITrays

fraction

Temperature

Figure B.2 Determination of ¢, for two (t;, ¢;) and Le_ = 1.

As a similar consideration applies to evaporation, only condensation cases are discussed

here. In this appendix, for reasons of convenience, equation (1.49) is assumed to be valid.

Slope condition

When equation (2.1) predicts that G(t) is entirely situated in the superheated region of the
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o~ plot, one assumes this curve does not intersect with F(t) between (t;, ¢) and (ty, ¢y}

At the interface the vapour fraction is related to the temperature by:
6 =F(t,) 8.1)

¢.g. see figures 1.7 and 2.1, For Lev 2 1 this assumption ig certainly correct, this follows
from the shapes of F(t) and G(t). F(t) i8 a convex curve, while G(t) is a concave curve for
Le, > 1 and a straight line for Le_ = 1. In §1.5 these properties of G(t) are discussed.

On the other hand, for Le, < 1, G(t) i a convex curve as well. Thus even when
equation (2.1) predicts no fog formation, it is theoretically possible that G(t) aad F(1)
intersect between 1, and by In figure B.1 an incorrect prediction and nse of criterion (2.1)

is depicted.
Tangency condition

When equation (2.1) predicts intersection, and hence a saturated region in the film, the
boundary temperature T, and vapour fraction €, of the saturated region have to be
determined. According to the saturation condition they have to obey the ¢ontinuity

equation:
¢, =F(t,) = G(z,) - {B.2)

On basis of the gradient continnity equations (2.9) and (2.10) the properties t, and ¢, have

alao to fulfill the tangency condition:

dr

e} 4G
dt

dt

, (B.3)

by, ta
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where:

N )
e} =Le, 2 e ¥ L (B.4)
di ta. t'b — t’a

Equation (B.4) follows from combined equations (1.49) and (2.11). Equations (B.2) and
{B.3) demand mathematically that the relation (2.8) between ¢ and t in the superheated
part of the film, passes in tangentially to the saturation line (1), which relates ¢ and t in

the fop region of the film.

Vaponr
G

fraction

Temperature

Figure B.3 The c—t relation in & film with two superheated and saturated regions.
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For Lev > 1it is evident that there exists only one (ta, ca) that satisfies equations (B.2)
and (B.3), owing to the shape of G{t). As long as the left hand side of equation (B.3) is
smaller than the right hand side during the iteration of 1, the sought t, must be larger. In
figure B.2 the procedure of deterlmin.ing t, is drawn for for Le, = 1, thus G(t) being
straight line, see equations (1.49) and (2.8). For iterations with Le, # 1, the same iteration
criterion i5 used in this thesis.

Implicitly it has been assumed for Le  « 1 that when a t, is obtained, the convex
curves G(t) end F(t) do not intersect between t, ard ¢, In fignre B.1 a ¢, and G(t) are
given which do not obey this assumption. For Lev < 1 it is even possible that several
superheated and and saturated regions exdsi in the film. In figure B.3 a ¢4 relation of 2
film is ilustrated in which two supetheated and two saturated regions are found. In both
(tal’ Cal) and (ta.z’ Ca.2) the enrve G(t), of the intermediate superheaied region, has to
pass in tangentially to the curve F(t), as in both these boundaries the continuity equation
(B.3) has to be fulfiled. Here the possible exdstence of more than one superheated region is

exelnded and therefore not further' examined.
Saturated bulk

Special attention iz required in the cage where the bulk properties (tb, cb) are saturated,

thus are situated on the saturation line:

¢ = Flty) (B.5)

With equations (B.2), (B.4) and (B.5) it can be verified, with application of Hopital’s

rule, that:
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Lim 4G :QE( . (B.6)
gty dbly  dtly

Equation (B.6) indicates mathematically that (8, ¢,) = (f,, ¢p) i8 a correct solution of
equation (B.3), independent of Le  (Le > ), and it means physically that the entire film
is satnrated. For Le_ 2 1, fog will always be formed in the entire film, and the solution t,
= t, is the only one possible, as explained graphically in figure B.4, with Le > 1 as

example,

B(t)
Vapour

mang

fraction

(Lh, (:h)

e :
e {1y o)

Temperalare

Figure B.4 Determination of ty for Lev > 1 and saturated bulk properties (tb, Cb)-

For Lev « 1, however, other relations between ¢ and t in the film are possible. The film can

for instance be entirely superheated, this is examined with equation (2.1). As example in
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figure 2.1 an obtained c—t relation is drawn of an entirely superheated film (Lev = 0,8},
When fog is predicted by equation (2.1), the film may turn out to be partly superheated
when a b, i8 found that is smaller than ty- In figuze 2.1 the ¢—t relation of a partly
superheated film is depicted (Le‘7 = 0.9). The boundary (ta, ca) in this film has been
obtained by means of the procedure previously discussed in this appendix. Physically both
depicted relations of e—t in the film are preferable to the pure mathematical solution t, =
t,. Moreover, when the values of ‘Lev and the fog condition function H{t ) in table 2.1 are
considered, it can be observed that the golution 4 a = 1y 18 0Ot possible, since Le, < H(tb)
and indeed H(ta) < Le_. In the next section it is demonstrated that one can always find
such a ty for Lev < 1.

For small vipour mass fractions and regardless the value of Lev, the entire film ig
fogging, as follows from tables 2.1 and 2.3, In chapter 3 namely it is derived that for small
¢, G(t) tends to a straight line. Furthermore, for small vapour mass fractions Le, » H(tb)
and consequently K > 01is gua.ra.nteecl, see tables 2.1 and 2.3,

Figure 2.1 also illustrates the correct assumption that F(t) and G(1) do not intersect
in the superheated region. In chapter 3 it is demonstrated the curvature of G(i) is more
pronounced for larger ¢, while ¥(t) tends to be more and more a atraight line in this part of
the c—t plot. Exotic G(t) and F(t) curves with multiple intersections or smperheated
regions, as depicted in figures B.1 and B.3, are therefore not likely 10 take place: G(t) 8 in
fact 3 function of the form G(t) 2 t* (t > 0,8 = Le, > 0), while F(t) is basically of the

form F(t) 8 M.

Fog formation condition
We have seen in appendix A that K > 0 is assured for ‘LeV > 1. In the following it is

demonstrated that this is also the case for Lév < 1; gince there is always & t; that i3

gmaller than the {emperature which satisfies K = 0 (or Le, = H(t), see equations (A.17)
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and A(18)).

To the temperature that satisfies K = 0, denoted here as tK=07 applies:

dr 2 4%
Le, - 1 [— +le, (1 —F@ ) dE -0, (B.7)
(Le, )mL ]+ e, ( 6 o],
K=0 K=0

see equation (A.17). The second derivative of G(t) with respect to ¢ in t, follows from

equations (1.49) and (2.11) as:

&e

dt ?

1l =-c
1 b 1
c, - 1 re- =
v -1 (B.8)

=Le_ (Le, —1) ——w——{¢
\t v (b — ta)Q

It can be verified with equations (B.4) and (B.8) that for 0 < Le < I:

W

4G| |2 &G
(Le, — 1) [a ] e, (1=GE) SR >0 (B.9)

by

by
Considering the feature of ¢ :

a’F
dt?

2
el

; (B.10)
dt ?

ty ty

and the fact that the left hand side of equation (B.7) is podtive for t < ty ., it can be
concluded that b, I8 preater than t;, but emaller than ty. . In other words, the saturated
region will never attain tx_y: Accordingly, in the saturated region Le > H(i) is

guaranieed, regardless the value of Le_.
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APPENDIX C: THE SATURATION LINE

In this appendix the saturation function F(t) is derived for a non—condensables vapour
mixture, in particular an air water—vapour mixture, as well as the firet derivative and
inverse of this function. The derivation is based on the saturation pressure equation of &
pure substance, on the thermally perfect gas law, and on QGibbs—Dalton’s law. The
saturation line is furthermore used to compute and depict the fog condition line H{t).

The saturation pressure of a pure substance is commonly described as:

Pvlsat(t) = Alt) = S0 (C.1)

(bas]

Equation (C.1) is referred to as Antoine’s equation when-J(t) is represented by:

J(t) = @ - ——— (C.?)
7+ +/[°C]
while equation (C.1) is referred to as Rankine—Kirchhoff®s é(iua.tion for:
B
3(t) = a———— 7 In{T/[K]} . (€3)

T/[K]

The Antoine constants of pure liguid water are found in Reid et ol (1977); & = 11.6834, 7
= 3816.44 and v = 226.87, the constants of liquid n—butyl alcohol are; o = 10,5958, § =
3137.02 and v = 178.57. The RankineKirchhoff constants of liquid nickel follow from
Smithells (1976); o = 32.41, § = 51578 and v = 2.01. The saturation pressure of a pure

liguid is for instance found at the interface of a film of that liguid. In the case there are no
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other gases present, this pressure is likewise the total pressure.

The mass fraction of vapour is defined as:

Py
= C4
=y ¥ iy (C.4)
Using the law for thermally perfect gases equation (C.4) is transformed into:
MV PV
om—BE (C5)
MP,  M,P,
RT RT

In this equation R represents the universal gas constant, R = 8316.94 J/kmoleK, Mn the
molecular mass of the nen—condensables (air: M = 28.96 kg/kmale, helium: M = 4.00
kg /kmole}, M, the molecular mass of the vapour (water: M, =18.02 kg/kmole, n—butyl
aleohol: M, = 74.12 kg/kmole, nickel: M, = 58.71 kg/kmole), and T the abdolute
temperature, The thermally perfect gas law is applicable as the mixtures considered are
atmospheric. The partial pressure of the non—condensables can be expressed in the total

pressure and the partial vapour pressure with Gibbs—Dalton’s law:
P =F . ~P (C8)

where the total absolute pressure Py . is close to 1.01825 bar (= 1 atm.) in the studied
mixtures of nickel and helinm, and water—vapour and air. The saturation mass fraction is

derived by combining equations (C.1), (C.5) and (C.6):
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t) = F(t) = Py st . (c.n)

M
n

Pv,sat(t) + M_ (Ptot - Pv,sat(t})
¥

Caatl

This saturation {or equilibrium) line of a water—vapour air mixture is drawn in figure C.1.
A mixtere i3 supersaturated when the temperature and vapour mass fraction are situated
above F(t), it is saturated when they are situated on F(t), and it is superheated when ¢ and
t are situated below F(t). A saturated mixtyre is found at the interface of a condersate film
in the presence of non-condensables, or in the fog layer when thermodynamic equilibrium
is assumed.

In this thesis frequently the first and second derivative of F(t) with respect to t is
needed. Substituting equation (C.1) and differentiating equation (C.7) with respect to ¢ one
finds:

a®_aif g M
b [1 3 M)F(t)] R(t) . (C.8)

v
Equation (C.8) illustrates that the first derivative is positive definite {as J{t) is
monctontcally rising and F(t) < 1), thus F(t) is a strict monotone rising function in t. The

second denvative reads:

EF _ [y gy pegy] OF

at?  dt [1 @ Mv) (t)] dt (©9)
di1 My
+ S-St

v

and it ¢an be verified that it is positive definite as well for the eonsidered air water—vapour

mixture. This implies that F(t) of this mixture is & convex function, as illustrated by figure
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C.1. Moreover, with F(t) known, the first and second derivative follow directly from

equations (C.8) and {C.9) with litile computational effort.

1 -
E(t)
0.5
gnpiagniurated
Auperhsated
] T
1] 50 100

L

Figure C.1 The saturation line F(t) of water—vapanr.

In chapter 4 the saturation temperature of pure steam and the dew point texnpecature of an
air water—vapour mixture are needed to investigate whether condensation takes place. The
pure steam saturation temperature follows from the combined equations (C.1) and (C.2)

aB:

st _ AP ) - - ‘ (C.10)
[°c] A Ln(Pv/[baI])
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The dew point temperature is obiained apalytically by determining the inverse of the

saturation funetion (C.7T), with application of equations (C.1) and (C.2), yielding:

t . £
L O . (Cca1)
¢l Mo
1+ (Lo
M
Imj—2 | o
P, /b2l
1
!
!
Hiy | 3
0.3 4
L]
0 80 100

10

Figure C.2 The fog formation boundary line for an air water—vaponr mixture.

In order to examine the possibility of fog formation in the film, in appendix A the fog

condition function H(t) has been derived as:
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Fi

H(t) = -
+ (-1 <L
dt ?

(€C.12)
QE} ’
dt

which must be smaller than Le  to permit K > 0. In fignre C.2 H{t) of the air
water—vapour mixture ig drawn with the saturation line (C.7) and its derivatives (C.8) and
(C.9) substituted. Fop formation spontanecusly ends when H(t) in the film's fog layer
becomes larger than Le . Equation (C.12) and figure €.2 indicate this is never the case

when Le_ 2 1, and might be the casc when Le, < 1.
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APPENDIX D: TRUNCATION ERROR ANATLYSIS

In this appendix an error estimation is given of the truncaied expansion of Mason’s series
when it is expanded up to N terms. The error E; introduced by calculating series (4.20) up

to N ferms reads:

[c4] i
=NTU NTU
By=—3— [(l—e E_% g
NTUlNTUg n=N+1 =0 il
(D)
-NTU; o NTU;
(1—e¢ ¥ —)]
i=0 il
Substituting the power series of the e~power transforms equation (D.1) into:
=NTU, —NTU oo i i
1 B o NTU oo NTU
By =¢ £~ (% -—B( 3 b (2
NTU; NTU, ,_pg.qi=n+l i1 G=n+1 il
It can be verified with the power series expansion of the e—power that:
0 P P p*
N —t
f=n+l i1 (nti)! n+2  (n+2)(n+3)
n (D.3)
P
—1)
(n+1)!

Application of equation (D.3) in equation (D.2) yields:
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Qoo ey ey NTUR NTUR
1—¢ 1 -e¢ oo
Ey < . T 18 (D4)
(NTUINTUE) n=N+2 n! =l
For:
NTUNTU, ¢ N+2 (D.5)

it can be validated that;

o NTURNTUR  (NvTU, NTU)NTE o
L (=l £ (IO NI s (). (D.6)
n=N+2 n! n! (N4+2)! n=N+2 n!

For most practical situations NTU; and NTUg are both smaller than 2. Sq, even for N 2 2,
inequality (ID.5) is applicable. Substitution of equation (DD.6) into equation (D.4) and

employment of the Taylor series expangion of the ¢-power in unity produces:

NTU ~NTU
NrURTU )N - e Bl -e ) Ne

< & e ¥ =1 . (D7)

(N+2)1 n=0 n!

iy

To calculate the maximum break—off error when series (4.20) is expanded up to five terms,
NTU,; and N‘I‘Ug are set equal to 2, and N = & substituted in equation {D.7), yielding a Eyy
smaller than 0.4 102 This maximum error is a factor 25 iimes smaller than the
propounded error estimation of Mason (1954), which is thus in fact too pessimistic. In the
plastic heat exchanger both NTU's are usually smaller than unity, comsequently, the

truncation error will even be smaller than calculated here.
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APPENDIX E: WATER CONDENSATION ON PLASTIC CHANNEL PLATES

In this appendix the maximum condensation mass flux of water—vapour towards a channel
plate is assessed. With this maximum mass flux the maximum condensate layer thickness
is detetmined. Even this maximum watet layer thickrness yields & heat transfer cocfficient
that is very large compared with the heat transfer coefficient of the plate and consequently,
the condensate film can be considered as isothermal.

Maximum mass fluxes towards the plate take place when pure saturated steam (f.e
tg,in = tsa.t) condenses on the coldest apot of the plate, that is where the cold liquid enters
the plate. With equation (4.48) it can be verified that:

(g )
mg - MR 0032 kg/ms (E1)

Hlat

see table E.1 for the substituted relevant properties. The total heat transfer coefficient of
the plate Epl follows from equation (4.5) with B = 950 W/m®K and b = 3000 W/m’K
substituied. This latter value follows from equation (4.7), multiplied by a factor two. This
has been done to account for heat transfer through the intermediate walls in the channel
plate, though these walls are close to adiabatic for plastic plates. In reality therefore Hl and
Epl will be smaller, resulting in less condensate production and a thinner condensate flm.
For an non—isothermal condensate film the physical properties of the film have to be
evaluated at 3 reference temperature that lies between plate surface and ¢ st Minkowyez
and Spacrow (1966) and Sparrow et al (1967) determined how these properties for a water
condensate film should be evaluated. However, in table E.1 and this appendix the physical

properties are evaluated at i thus it is assumed & priers that the film is isothermal

sat’
Substitution of the maximum flux (E.1) and the valves of table E.1 into equaiion {1.26)
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yields as maximom dimensionless thermal mass flux:
¢1. <118 (E.2)

Actually, the maximum mass flux is smaller, as the driving femperature difference (tsat -
Il) decreases because of the temperature rise of the lguid. In the presence of
non—condensables the interface temperature t, is also smaller than bepys implying a smaller
driving temperature difference. Furthermore, the film as such causes an axtra, hut small,

heat resigtance that reduces the mass flux.

- — 2
u=5m/s i =8/5

o o
tl,in =0C boap = 200°C
E=981m¥s Dh,g {(=2d) = 4 mm
By, =75.8 mm B = §7.2 mm
Hg =55 W/mK le = 780 W/mK

—_— & p— 6

koon = 0677 W/mK M, = 2257 10° J/kg
Cp,con = 4216 I/kgK ¢ = 2034 I/kgkK
Peon = 958.1 kg/m* o = 0.507 ke/m*

Mo = 282.2107° Pas n, = 12.28 1070 Pas
Table E.1 Conditions in heat exchanger, see also figtire 4.2, and physical properties

of water at state of saturation, according to V.D.I. (1988).

In order to examine the maximum condensate film thickness, attention is paid to the
condensate flow along the plate. The film flows under the action of gravity in the direction

opposite to the gas flow, which is the most unfavourable condition to obtain a thin film,
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For the film the momentym equation in the direction of x yields:

2
du
con dP
Teon Gz Poondt (E3)

In egquation (E.3) the convective terms are not retained. Sparrow and Gregg {1959)
demonstrated this so—called Nusselt asgumption is valid for all lignids, except low Prandsl
number liguids, such as liguid metals. The buoyancy force exerted by the vapour on the

film has also been neglected, because pV/ Poon is very small, see table E.1.

Appropriate boundary conditions on W 3165
Ueonl¥=0) =0 (£.4)
g3
Teon < =T (E:5)
&y y=é
con

The solution of equation (E.3) with application of equations (¥.4) and (12.5) reads:

(Poont + dP/dx)

Ueon(¥) = 7 (B* —yd0) + ,]L vy (E.8)

con con

The interfacial shear stress, exerted by the gas on the condensate film, follows from
equation (1.30). Combining this equation with equations (1.32), (1.56), (E.1) and the
properties of table E.1, yields ag maxiroum non—dimensional frictional mass flux:

9, €021 {E.7)

and as maximnm shear stress:



228

T 0.86 Pa . (£.8)

This shear stress is very small because the flow is laminar. Yet, the interfacial stress cannot
be neglected since the film thickness is also very small and hence, the first term in equation
(E.6) i5 small a= well. The pressure gradient figuring in equation (E.6) follows from
equation {1.42). Applying equations (1.31), (1.32), (1.56), (E.1), and substituting the

values listed in table E.1, produces:

4P o oPafm (E9)

dx

Applying equations (1.42) and (1.56) it has been assuined the condensate surface velocity
é

c:on) iz small in comparison with the vapour velocity u, this will be verified iater on.

Hoon

Moreover, the free flowing area decrement by the presence of the condensate flm on the
plate surfaces have not been taken into account cither. It will be verified later on these
films are very thin when compared with the total channel width d.

The mean condensate velocity iz obtained by integration of equation (1.6):

&

con
Uoon(¥) dy =

_1
eon E(:ony

Il ——

0

_Seon [ﬁcon(Pcong + dP/dx) T]
3 2

(E.10)
WCDD

A plobal balance of mass flows towards the condensate film and flowing of the plate yields:
mB

= = feoneoncon (E.11)



229

Substituting equation (E.10) into equation (E.11) produces:

3 2

(E.12)

_A con’con [acon(”mng + dP/dx) 'f]
Teon

Seiting 6‘.‘.011 dimensionless with respect to the film thickness withont shear, thus r = 0:

[Pcon('”co nf dP/dx)]é

A= (E.18)
con 3B,
transforms equation (E.12) into:
AT AT=¢ (E.14)
wherein:
. T
€= =33 - (E-15)
gs? :

In equation (E.15) the values of table E.1 have been substituted, as well as equations {E.1),
(E.8), and (E.9). Rather than determining A by numerical iteration of equation (E.14), it
is asymptotically approxdmated by substitution of the perturbation expansion:

A=Y, +en+o(en) (E.16)

into equation (E.14). Sclving the zeto—order equation yields:
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Ay=1 , (B.17)
and the first order equation yiclds:
A=1 . (E.18)

The asymptotic solution, represented by equations (E.15)—(E.18), indicates that the shear,
exerted by the vapour, the film thickness enhances with a factor 2.5 (= {1+¢)/¢). For a
free flowing film namely, the dimensionless film thickness A equals umity, see equations
(E.12) and (E.13). This implies that it is of a major advantage to position the heat
exchanger towards gravity such that the condensate flow is not directed opposite to the gas
flow. Mereover, for these preferable flow—off situations the pressure gradient, appearing in
equation (E.3), is zero as well.

Substitution of equations (E.1), (E.9), and (E.15)-(E.18) into equation (E.13), and

the values from table E.1, yiclds a8 maximun film thickness:

_4 [
fon $ 145107 m . (B.19)
The value of two film thicknesses is about a factor 7 smaller than the channel width cl5, see
table B.1. Thus the assumption that the presence of the films is of negligible influence on
the available free flowing area, is acceptable. Equation (E.19), combined with table E.1 and
equations (E.8) and (E.9), is substituted in equation (E.6) to obtain:

1 Y=008m/s . {£.20)

con( 6001’1

This velocity of the condensate surface is indeed much smaller than the gas velocity 1, see

table E.1. Equation (E.20) also indicates that, due to the shear strese exerted by the gas,
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the surface velocity is opposite to the direction of gravity and mean condensate velocity
Econ' As minirmum heat trarsfer coefficient of the plaie is obtained with equation (E.19)
and table E.1:

k
hoon = T 2 4700 W/m?K . (E.21)
con

This absolute minimum heat transfer coefficient of the water film is about a factor 7 larger
than the heat transfer coefficient of the plate le' see table E.1. Furthermere, when the gas
flow is not directed in the opposite direction of gravity, the heat transfer coefficient of the
film is at least even a factor 2.5 higher than here determined, a8 the film is the same factor
thinner. Accordingly, the water condensate film is approximately isothermal. Its presence

is only of importance to relate unambiguously ai the vapour condensate interface the

partial water—vapour pressure to the interface temperature.
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APPENDIX F: THE IMPROVED TANGENCY CONDITION

Introduction

A pioneering article on fog formation in non-condemsables vapour mixtures has been
published by Johnstone ef al. (1950). Extensive reviews of subsequent literature on the field
of fog formation in gas mixtures have been presented recently by Sekulie (1985) and Koch
(1986).

On the basis of a film model analysis, Johnetone ef ol (1950) derived the tangency
condition to determine the critical wall temperature for fog formation in flowing binary
mixtures in the presence of wall condensation. This condition followed from a congideration
of the vapour pressure and femperature gradients at the wall, which were compared with
the slope of the saturation ling ai wall temperature. Experiments were furthermore
performed with mixtnres of nitrogen and vapours of sulphur, n—butyl alechol and water to
validate the derived condition.

Two experimental departures from the theoretical predictions of (no) fog formation
were observed, namely:

— no fog formation, though predicted, and,

— fog foxmation, though superheating was proved theoretically.

This former deviation could be attributed to the absence of sufficient nuclei in the gas flow,
although in the examined mixtures extra nuclel were generated artificially. The second
discrepancy, only found with film condensation of n=butyl alcohol and dropwise
condensation of water, could not be explained satisfactory.

In this appendix it will be shown that Johnstone ef ol (1950) employed an erroneons
equation to investigate fog formation; the improved tangency equation will be derived here.

Furthermore, the nitrogen water—vapour condensation experiments of Johmstone et al
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(1950) are found to correlate excellently with this improved condition.

Basic equations of the film and their solutions

In this section the profiles of the vapour mole fraction and temperature in a stagnant film

are derived. The required basic equations of diffusion and energy can be found in Bird f ol.

(1860).

+
i ¢

bulk

wall +

Figure F.1 The film.

In the film, ie a steady state system wherein variations in the direction of x are not

considered, the Fickian diffusion equation reads:

+ 2+
+dc =p+||)d c

vg . (F.1)
dy dy*
see figure F.1. Tn this equation v appears as induced velocity:
+
v=——2 _dc (F.2)

1—c+dy
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This velocity is traditionally referred to as "induced velocity", "bulk flow", or "Stefan

+

flow". The boundary conditions on ¢, see figure F.1, read:

dy=0=c , (F.3)
Fr=8)=cf , (F.4)

where °4i— is the vapour mole fraction at the interface and c'{; the mole fraction of the bulk.
The bulk values of temperature and vapour mole fraction are taken to be the mixed mean
values when the film model is applied to closed channel flow, while ‘5t and § . are considered
to be Dh/Nu and Dh/Sh, respectively. Substituting equation (F.2) into equation {¥.1),
solving the resulting differential equation, and applying equations (F.3) ard (F.4),

produces:

+
¥ 1 -—c¢
~Ln E
+ + o W1 =gy
y) =1+ (c;~1)e = (F.5)

The energy equation of the film, withoui viscous dissipation, internal heat sources and

radiation, reads:

+ 2
P""c'gv a4 et ,—ct ) de’dt _pdft (F.6)
4 P D, dy dy dy?

In this eqmation the second term on the left hand side rcpresents the well-known

Ackermann term. The boundary conditions on t are:

y=0=¢t , (F.7)
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y=48)=t, - (F.8)
Substituting the relation between the mixtures molar specific heat and its composition:

+_ bt oy o .
cp=¢ CputOeTep, (7-9)

and equations {F.2} and (F.5) into equation (F.6), sclving the resulting equation and

applying boundary conditions (F.7) and (F.8), yields the temperature in the film:

+ +
c 1 —-¢
._E.xiLn b
Lec;éc 1-— c'i*'
-1
ty) = (ty, )| —F +t, (F.10)
cg,vétLﬂ B cb]
Lec+¢5c 1 - c'i*'
e P -1
where:
Le= Xz (F.11)
P cpll) pcpﬂ)

In this section the vapour mole fraction and temperature in a stagnant film have been
derived, in the next section they are nsed to investigate supersaturation in the mixture.
Note that equations {A.13) and (F.9) are equivalent.

The fog formation condition

In order to obtain a relation between ¢ and t in the film, which can be compared with the
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saturation line, the coordinate y/4, is eliminated from equations (F.5) and (F.10), yielding:

=6t =1+(f-1) (F.12)
+
+ + Lec
c Vﬁth 1 - ey _
t=y c+Leﬁc 1 —c';' cpjv
[e P —~1] +1
tb— ti

This relation is a monotonically rising function in t, since the first derivative of G+(t) with

respect to t is positive:

aat LeeT c'l!' -1 c+Leﬁc 1 - c‘}'
It =~ t_t][«sl’ —1] (F.13)
p,v b
c+ ) 1 -t Lec+2
+E,vth _E T -1
b=t re LeaSC 1-0c ®o,v
PP 1—1]+1
tb— ti

For Lec;/c; ¢ = 1 the function G+(t) iz concave, G+(t) i8 a straight line for Lec';/c; v

= 1, while G+(t) is a convex curve for Lec;/ c'I’; ¢ < L. These properties follow from the
i

gecond derivative of G+(t) with respect to t. The vapour mole fraction on the saturation

ling follows from:

P t
et =Pty = v sat®) : (F.14)
tot

Johnstone et al. (1950) derived, on basis of a consideration of vapour and temperature
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profiles, the following slope condition to ¢xamine whether supersaturation occurs in a

condenser:

det

dy - + +

—y=0_dG >4 ‘ (F.15)

dt =t tﬂti
I¥iy=p
which is based on the slopes of F¥() and GF(t) int = Ut
1
Vaponr F-"(l)
mola
fraction
+
0.5 el ) (o)
s
o
Xy
-~
-
-~ N
- (ty C:L)
(] -
]
0 50 1fq 100

Figure F.2 Determination of t, and prediction of fog formation, Lec;/cg = 1 and

8, = 4, for two (ti, c';').

With this equation and the saturation condition, thus excluding the possibility of
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supersaturation, fog formation can be detected. The lowest permissible Y for which fog is
not yet formed, denoted as t,, is obtained when equation (F.15) is an equality. Applying

equations (¥.13) and rewriting equation (F.15) yields as tangency condition:

+ o+
art _dG+ _fp_%cb % (F.16)
Tl "8 iy ety -t ’
=ty =ty 4@ty by

where ¢, denotes the critical interface mole fraction (c, = F(i,))- In this squation the

thermal Ackermann correction factor is introduced as:

+ +
Ch, vétL 1 - Ch
¥, +
+ Lec :5c 1 - Cy
at = p ) (F.17)
1 et 5 1-¢f
p,v 4 [ b
+ +
1'..&(:P Jc 1 - ¢,
[
and the diffusion mass transfer correction factor:
% %
Injl -
1 - c+
+ _ 8 F.18
Oc=—TF+ (F.18)
'k a
_ Wt
1 .

Both (molar) conventional film model correction factors can be found in Bird et ol (1960).
For t; < t,, a part of the film is fogging (1. £ ¢ < 4,), in this part t and ¢ are coupled with
equation (F.14). In the superheated part (ta {t< tb) et = G+(t) prevails. In figure F.2

the physical principles of equationa (F.15) and (F.16) are illustrated graphically. Equations
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{F.15) and (F.16) have been applied successfully in linearized form by Toor (1971a, 1971b)
(6,/6, = Sh/Nu = 1), Koch (1986) (§,/6, = 1) and Hayashi et ol {1981) (§,/5, = Le® ¥ =
0.95) to determine fop formation and assess the boundary of superheated and saturated
region in flowing mixtures of djluté wall condenging water—vapour (@': ) @';' ¥ 1) in air.
With eguation (F.15) (or with equation (F.16)) fog can be detected. But on the

other hand, if equation (F.15) is not fulfilled, superheating in the entire film is not
+

>
PV "
1 superheating can be examined correctly with equation (F.15), since G+(t) is a straight

necessarily guaranteed. This aspeet of critedion (I'.15) is discussed below. For Lec:'lib'/ ¢

line or a concave curve, whereas F+(t) i convex.

Vapour
e
frat:bion

e
(L!r' Cl)}

atiy
FH(L

it e

] 40 el 100

Figure F.3 Erronecus prediction of a superheated film with equation (F.15),

ot -
Lecp/cpyv <land § = 4.
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However, for Lec;/ c;ﬂ < 1, it is theoretically possible that equation (F.15) predicts no
fog, formation, while both convex curves FH(t) and GT(t) intersect in the film. In fignte
F.3 an example of such a supersaturation case in the film is depicted.

The expression of Johnstone ef ol (1950) ("eq. (9)") it obtained when in equations
{F.18)«(F.17) are substituted:

5 S» 4
—=—=LLa , (F.lg)
6c Nu
and:
ST F.20
Cp’v CP ! ( )
and:
+ _
et =1 . (F.21)

Equation (F.19) is applicable to turbulent flow (the so~called Chilton—Colbure anslogy)
and to forced convective laminar flow in the entrance tegion of a channel. Johnstone et al.

(1850) examined experimentally laminar flow (He ¥ T00) of binary rmixtures in this region

of o cireular tube. Approximation (F.20) implies c'I'; v= c'l')' o e equation (F.9), and
introduces an unacceptable inaccuracy. This is in particular she case with nitrogen and

_I_
p?
kl/KmoleK and nitrogen: c; o ¥ 28 kJ/kmoleK). Approximation (F.20) follows actually

n—butyl alcohal mixtures (n—butyl aicobol: c; o 135 kJ/kmoleK, water: ¢ 2 H

,V
from a film model analysis where the Ackermann term in energy equation (F.6) is not
taken into account. Assumption (F.21) is not correct either, since the diffusion cotrection

factor @)"C' is of the same order of magnitude as the thermal correction factor; they are even
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identical when Lec'l')' /c';’v = 1. Equation {F.21) follows in fact from & film model analysis
where the effect of the induced velocity on diffusion is neglecied. The introduction of
equations (#.20) and (F.21) might be the reason Johnstone ef ol (1950} observed
discrepancies between some experiments and theory. In the nex{ section these cases are

discussed in detail.
Condensation experiments

The experimental results of Johnstone ef al. (1950) are now tompared with the correct
expression predicting (no) fog formation. We are particularly interested in. the cases fog
was not predicted with erroneous equations (F.16)—(F.21), though fog formation was
observed for some situstions, The introduction of equation (F.20) results namely in too

higha t, {aince ¢ > c;), while assumption (F.21) causes too low a t, (since @t > 1),

e
PV
see equation (F.16). The net result of both introductions could be too low a t,, resulting in
an erroneous theoretical prediction of a superheated mixiure and hence no fog formation.
These sitnations were found only with mixtures of nitrogen and vapours of n=butyl alcokol
and water, which are therefore treated here.

In table F.1 the considered experimenial data of water—vapour nitrogen mixtures
are listed, while in table F.2 those of n—butyl alecohol nitrogen mixtures are summarized. In
these tables t, and (no) fog formation predictions of Johnstone et al (1950) are included.

With equations (F.16)—(F.19) the correct critical temperatures t, are now
re—determined. As the physical properties of air and nitrogen are very similar, the physical
properties of air are used here, taken from V.D.I. {1988). The latter is also used to supply
the properties of water—vapour. The diffusion coefficient of both gases is given by Edwards

et al (1979) as:



The molar specific heat c'l')'  of n—buryl aleohol is taken from Reid ef al (1977).

0.101
0.101
0.098
0.097
0.125
0.123
0.123
0.095
0.100
0.102
0.096
0.169
0.172
0.172
0.174
0.176
0.176

a8
b/[m¥/s] = 1758 10+ (T/IK[)

111.0
110.0
1047.0
105.0
110.0
111.0
112.5
123.5
134.0
136.5
135.0
129.0
135.0
137.0
139.0
140.0
142.0

12.0
10.7

9.6

8.3
13.7
12.4
12.0
111

6.0

4.7

4.5
16.5
15.0
16.0
16.0
15.0
16.5

P,wt/[Pa]

Johnstone ef al (1250)
ct by [°c & [°c t, [*C] prediction observation ty [°C] prediction  Le

8.0
8.3
8.5
£.3
12.6
124
12.0
5.0
4.5
45
3.7
15.0
14.5
14.2
14.0
14.0
13.8

no fog
no fog

no fog
critical
value

no fog
critical
value
critical
value
10 fog
o fog
no fog
no fog
no fog
no fog
no fog
no fog
no fog

no fog

no fog
no fog
no fog
1o fog
no fog
fog
fog
no fog
no fog
no fog
fog
no fog
fog
ng fog
no fog
fog

no fog

equations (F.16){F.19)

10,1
10.3
103
104
14.4
13.9
137
0
6.5
6.5
5.6
17.0
16.3
16.0
15.9
16.0
15.7

no fog

no fog
fog
fog
fog
fog
fog

no fog
fog
fog
fog
fog
fog

critical
value

no fog
fog

no fog

0.84
0.84
0.84
0.814
0.83
0.83
0.83
0.84
0.84
0.84
.84
Q.52
0.82
0.81
0.81
0.81
0.81
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(F.22)

Table F.1 Dropwise wall condensation experiments of water—vapour in nitrogen.
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e
The values of k and P of this vapour, provided by Landolt—Bornstein (1960), are

approxmated by:

k/[W/mK] = 11.88 10 + t/[°C] (5.54 1070 + 2.135 10~ +/[°C]) ., (F.23)

D/fm?/s] = 0.74 1070 [T K]m . (F.24)

2
The molar densities p+ of all the mixtures are simply determined with the ideal gas law.
The Antoine relations for the saturation pressures of both vapours stem from Reid et al.
(1977). These vapour pressures, in combination with Ptnt = 1 atmosphere (= 1.01325 bar),
vield saturation lines for both mixtures which correspond excellenily to the lines drawn by

Johnstone et al (1930) ("fig. 2" and "fig. 3").

Johnstone et ol. (1950) equations (I, 16)—(F.19)

c; ty [°c) t °c t, [°C] prediction observation t, [°C] prediction  Le

o181 2190 337 zar Sl g w0 nofg 141
0.178 2290 350 327 nofog nofog 20.9 nofog 1.42
0.180 2650 310 302 nofog nofog 273 1o fog 141
0.180 1380 566 44.0 1o fog nofog 4l.3 nofog 143
0,180 1520 439 415  nofog fog 388  nofog 1.42
0.182 1670 459 393 nofog nofog 368 nofog 1.41
0.181 212.0 387 343  nofog nofog 316 nofog 1.41
0180 2025 282 oo OOl gl acg nofg 140
0.136 95.6 548 48.0 mofog nofog 47.5 no fog 1.63



0.140
0.136
0.137
0.139
0.139
0.139
0.138
0.139
0.147
0.149
0.133
0.147
0.107
0.107
0.11%
0.106
0.108
0.109
0.110
0.108

162.3
1740
206.5
209.0
210.0
2104
2075
207.5
229.0
250.0
250.0
220.8
122.0
122.0
128.0
128.0
169.0
180.5
190.0
195.0

37.0
34.7
34.0

30.3
331
322
32.8
326
29.1
288
314
38.7
385
421
38.7
312
344
32.9
a3

35.3
333
ae.z
30.3
30.3
30.2
30.5
30.6
20,5
28.0
283
30.2
37.0
37.0
36.3
35.3
0.2
20.0
28.0
27.5

no fog
no fog
no fog

no fog
critical
value

no fog
no fog
no fog
no fog
ro fog
no fog
no fog
no fog
no fog
1o fog
no fog
no fog
no fog
no fog

no fog

fog
fog
no fog
fog
fog
no fog
fog
no fog
no fog
no fog
no fog
fog
no fog
fog
no fog,
fog
fog
no fog
no fog

no fog

33.5
31.6
28.4
28.2
28.3
28.2
28.4
28.5
274
26.0
26.3
28.1
357
35.7
35.1
4.3
28.9
27.8
26.9
26.2

no fog
no fog
no fog
no fog
ng fog
1o fog
1o fog
no fog
no fog
no fog
no fog
no fog
no fog
no fog
no fog
no fog
no fog
no fog
oo fog

ro fog

159
1.60
1.59
1.58
158
1.58
1.58
1.58
1.54
1.53
1.51
1.54
177
197
175
197
1.75
1.74
173
1.74
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Tahle F.2 Filmwise wall condensation experiments of n—butyl aleohol in nitrogen.

The saturation lines in figures F'.2 and F.3 are in fact those of water—vapour. The mixtures’

molar specific heat is evaluated at the bulk composition (see egumation (F.9) with et

teplaced by C:I.;)- The mixtures’ thetmal conductivity is evaluated at the bulk composition,

taking into account it composition following Perry and Green {1984):



+ _ ot

- cpk, . (1 cb) k, ‘ (F.25)
+ Mn '} + 'k

cp + (M;) (1 —ep) 1 —cb + (M-)

The properties of the two components are evaluated at bulk temperature. [n tables F.1 and
£.2 the newly determined t, and calculated Le are listed. Table F.1 reveals that all correct
t, are larger than those of Johastone ef al (1850), owing to the effect of equation (F.21).
Accordingly, for most cages t; < bos and hence fog formation is predicted, which is in
agrecment with the expetimental observation. However, in a few situations fog is predicted
but not observed. This can be explained from the difference between t, and ts which is a
measure for the degree of supersaturation. In general, it follows that fog is not observed
when t, is slightly below t_, while visible fog formation occurs when t; exceeds the critical
temperature t, significantly (typically 1°C). Table F.1 also discloses that, according to the
improved tangency condition, no inexplicable situations appear where a critical condition
(ta = ti) or even superheating is predicted theoretically, but fog observed experimentally.

The new results in table F.2 indicate however that the re—determined 1, are even
lower than those of Johnstone ef al. (1950). This can be explained from c'll)"v/c; being
much larger than uymity, typically c"g,v/cg = 3.2, for all the mixtures considered. This
implies an enhancement of @’: and reduction of the calculated 1., see equations (F.16) and
(P.17). The observed fog can therefore not be explained with the here derived equations
(F.16)~(F.19}.

An intersection of GT(t) and FT(1) in the bulk, as depicted in figure F.3, may
resuli in fog formation as well. This intersection is posgible since LecT / c+ < 1 for both
mixtures considered (water—vapour air: Lec'; /c 207, n—butyl a.lc.ohol air: Lec+ / Oy, -
0.5), which implies G¥(t) is a convex curve, A numencal investigation of GT(t) and Ft1)

with t ranging from t 1oty provided evidence for both mixtures that an intersection of
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both curves does not ocenr when superheating was predicted by the slope condition. That is
to say, F+(t) > G+(t) in the entire film, thus predicted correctly by slope condition
(¥.15). Summarizing, the experimental results of n—butyl alechol nitrogen mixtures cannot
be explained properly.

The major difference with the water—vapour nitrogen experiments, besides the
higher temperatures and different Lewis numbers, is the filmwise condensation of n—butyl
alcohol, since po promoter could be found for dropwise condensation. Oleic acid was used
by Johnstone ef ol {1950) to promote the dropwise condensation of water—vapour. This
dropwise condensation implies that the measured channel wall temperature better
corresponds to the interface temperature, which might be the reason overall agreement is

found only between theory and water—vapour nitrogen experiments.
Conclusions

In this appendizx an improved tangency condition for predicting supersaturation in
condensers has been derived. This condition is based on the slope of Lhe saturation line and
film model expressions for the vapour mole fraction and temperature. It has been
demonstrated that for Lec;/ c;,v < 1 superheating in 4 mixture ¢cannot be gnaranteed by
thiz condition. But a comparison of this condition with a complete examination of
temperature and vapour mole fraction profiles in various binary mixtures of nitrogen with
vapours of water and n—butyl aleohol, revealed that the condition predicted correctly
superheating. A compatison of the condition with experiments of Johnstone et ol (1950),
concerning dropwise wall condensation of water—vapour in air, yields good agreement. If
dropwise condensation of n—butyl alcohol had also been achieved by these investigators,

complete agreement with theory might have been obtained.






APPENDIX G: EXPERIMENTAL DATA OF PLASTIC HEAT EXCBANGER

In this appendix the primary experimental data of the plastic heat exchanger are listed.
Furthermore, to vetify the reliability of the measured quantities, the relative error of 2
global energy balance 18 included as well.

The added energy to the primary water reads:
Q=B wey () oue = ) (G.3)
and the extracted latent and seneible heat from the gas is governed by:

Q =0Gw 96

g g,incp,g,intg,in - wg,outcp,g,outtg,out

+ (G.2)

~ %eon®p,vicon W eonBlat

Employing this expression the cooling of the condensate helow the condensation
temperature has been neglected. The effect of subeocking is axpected to be very modest; in
appendix E it has been demonstrated that the condensate film is practically isothermal. In
equations (G.1) and (3.2) the factors 48 and 86 appear since the total liquid mass flow and
total gas mass flow are divided over 48 plates and 96 gaps of the gonsidered heat

exchanger, respectively. The exit gas mass flow simply follows from the mass balance:

bw_. —-W

% wg,ou’s = gn con (G3)

where both 96 w and w con ¥ meagured. The specific heats of the mixtute at the eniry

Ein
and exit are evaluated at their coneerning temperatures and compositions. The vapout’s

specific heat oy and latent heat K., appearing in equation {G.2), are evaluated at ¢, .
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nr

OT e L3 By

48 w
[ke/s]

0.860
0.860
0.852
0.860
0.860
0.860
0.860
0.860
0.860
0.880
0.860
0.860
0.880
0.850
0.860
0.912
1.870
1.870
1.670
1.670
1.670
1.870
1.670
1.670
1.670
1.646
1.670
1.670
1.670

b in

[°c]

18.2
18.5
18.9
19.7
20.8
19.4
20.4
20.5
20.3
18.0
18.1
18.2
19.0
19.5
19.9
19.7
18.3
18.6
19.0
20.3
204
20.0
204
203
20.4
17.8
18.1
18.4
19.8

t1,4;»111‘.
[°C]

209
20.5
21.0
26.8
33.4
274
24.9
321
30.5
20.5
20.8
30.6
33.7
28.7
32.8
27.1
18.7
20.0
20.1
24.4
28.0
24.6
23.1
270
264
19.3
19.5
18.3
237

96 wg,in
(kg/s]

0.435
0.376
0.235
0.423
0.423
0.378
0.237
0.379
0.250
0.355
0.395
0.459
0.455
0.264
0.280
0.263
0.435
0.375
0.235
0.430
0.424
0.380
0.236
0.379
0.248
0.446
0.385
0.233
0.244

E,in
[°c)

60.5
§0.8
64.8
60.0
61.8
§9.7
82.0
60.6
61.4
&1.0
61.6
50.9
62.1
62.1
61.4
57.7
60.8
61.0
64.8
61.1
6L.7
50.3
61.8
60.5
61.8
59.4
80.8
63.8
63.0

tg,oufs
(°c]

40.3
39.0
35.0
43.8
52.2
4.3
8.2
50.0
48.6
38.2
375
474
516
42.5
489
354
40.1
38.7
43.4
43.8
50.9
43.5
37.0
48.8
48.0
39.5
38.0
34.0
40.5

0.066
0.067
0.065
0.475
{.885
0.627
0.380
0.868
0.954
0.082
0.061
0.836
0.921
0.693
0.952
0.648
0.065
0.065
0.065
0.445
0.874
0.616
0.382
0.872
0.918
0.080
0.082
0.093
0.510

0.128
0.148
0.226
0.802
1.000
1.000
0.846
0.996
1.000
0.212
0.152
0.945
0.897
0.543
0.886
0.811
0.132
0.150
0.238
0.780
1.000
1.000
0.840
0.998
0.996
0.190
0.216
0.402
0.910



nr wcon

[kg/s]
1 0.000
2 0.000
3 0.000
4 0.007
5 0.017
] 0.009
T 0.004
8 0.015
9 0.014
10 0.006
11 0.000
12 0.016
13 0.018
14 0.011
15 0.017
18 0.008
17 0.000
18 0.000
19 0.000
20 0.008
21 0.018
22 0.010
23 0.004
24 0.017
25 0.015
26 0.000
27 0.000
28 0.000
29 0.009

Table G.1 Experimental data for t g.in 2 60°C.

348
46.1
36.2
306
43.2
41.3

40.5
47.4
36.1
43.0
35.6

33.5
43.8
35.6
30.1
41.5
9.5

31.8

Piot

[Pal

102950
102940
102940
102950
102050
102680
102670
162680
102670
103470
102680
102050
102950
102940
102940
100510
162950
102940
102940
102950
102950
102680
102670
102680
102670
103480
103470
103470
103470

Eq
H

-0.088
0.143
~{.052
—0.052
=0.037
—0.026
—0.034
=(.030
0.01¢6
—0.091
—0.008
0.005
—0.041
—0.027
=0.036
—0.040
-0.070
—.144
—0.059
—0.047
—0.045
—0.047
—0.173
—0.019
—0.048
—0.143
—0.174
~0.083
—0.031

0.040
0.039
0.038
0.039
0.089
0.039
0.037
0038
0.037
0.039
0.039
0.040
0.040
0.037
0.038
0.035
0.021
0.020
0.018
0.020
0.020
0.020
0.01%
0.020
0.018
0.021
0.020
0.018
0.019

0.702
0.798
1.228
0.689
0.661
0.749
1.170
0.731
1.058
0.838
0.763
0.623
0.618
1.031
0.554
1.044
0.705
0.803
1.227
0.684
0.663
0.750
1179
0.735
1.072
0.687
0.841
1.229
1.130

251
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nr

oSo ] D R L R

B OBy e e e e
3 W 0o =~ Ch Dn R A R = O

[kg/s]

0.860
0.860
0.865
0.860
0.860
0.860
0.860
0.860
0.860
0.912
0.912
0.912
1.670
i.662
1.862
1.670
1.679
1.870
1.870
1670
1.670

Yin
[°¢]

201
19.6
204
19.8
20.2
20.2
204
20.5
20.0
8.5
20.5
203
20.3
20.0
203
20.3
20.1
20.2
208
20.7
20.8

t"l,oui;
°cl

24.0
23.2
23.1
35.6
35.3
34.0
452
445
428
223
1
40.5
223
21.9
21.9
20.5
20.1
28.0
18.2
35.5
344

06 Wg,in
[kg/s]

0.427
0.372
0.236
0.418
0.376
0.249
0.403
0.360
0.277
0.442
0.434
0.443
0.430
0.367
0.232
0.419
0.377
0.251
0.403
0.360
0.274

t"g,in

(°cl

84.3
81.8
50.B
80.2
78.8
82.4
83.4
82.3
841
823
30.1
80.9
78.8
81.2
824
80.4
79.1
83.0
3.2
82.6
84.4

g,0ut
[°a)

53.2
49.0
41.0
62.0
60.5
58.5
Th.4
4.2
T4.8
48.7
52.5
66.0
50.6
48.4
41.0
61.0
50.4
51.0
4.0
73.1
73.5

0.036
0.034
0.040
0.469
0.492
0.452
0.847
0.863
0.859
0.031
0.304
0.703
0.042
0.034
0.038
0.479
0.481
0.456
0.845
0.857
0.845

R'Hout

0.088
0.096
0.176
0.816
0.824
0.864
0.974
0.688
0.694
0.085
0.670
(.949
0.100
0.098
0.176
0.800
0.428
0.844
0.084
0.990
1.000



ur W“mIl
[kg/s]

1 0.000

2 0.000

3 0000

4 0.020

5 0.019

6 0.016

7T 0,036

8 0.034

9 0.033

10 0.000
11 0.012
12 0.028
18 0.000
14 0000
15 0.000
16 0.022
17 0021
18 0.019
19 0.042
20 0.041
2 0038

Tablo G-2 Experimental data for b ;) 80°C.

con
(°ct

51.0
489
46.5
68.4
66.3
65.0

42.7
61.9

48.9
46.9
44.2
66.3
64.2
615

Fiot

[Pa)

162550
102540
102540
101880
101880
101870
101880
101880
101880
102680
100550
100520
102550
102540
102540
101880
101880
101870
101880
101880
101280

B
!

—0.038
—{0.044
=0.023
—0.005
=0.017
—0.092
—0.006
=0.030
—0.009
0.039
0.007
~{.041
=0.125
—0.078
—0.130
~0.035
—0.087
-0,023
—0.037
~0.021
—0.076

NTU,

0.041
0.040
0.038
0.040
0.040
0.038
0.040
0.038
0.038
0.039
0.038
0.038
0.021
0.021
0.020
0.021
0.021
0.020
0.021
0.020
0.020

NTU e Figure

(-]

0.737
0.829
1.245
0.667
0.733
1.063
0.588
0.664
0.827
0.712
0.675
0.594
0.730
0.842
1.272
0.668
0.755
1.061
0.604
0.670
0.844
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48 W,

(ke /s]

0.860
0.860
0.865
0.860
0.860
0.880
0.860
0.860
0.938
0.812
0.912
1670
1670
1.670
1.670
1.670
1.870
1.670
1.672

AIL

[°C]

19.0
19.8
20.1
20.4
20.5
20.5
20.5
20.7
18.7
20.0
20.4
19.1
9.8
20.2
20.7
20.8
20.7
20.6
20.5

tl,out
[°c]

23.9
24.2
240
43.5
44.4
43.8
45.1
46.6
23.4
33.7
34.8
21.8
22.3
22.3
34.0
353
34.9
36.1
36.6

96 wg,in

[kg/s]

0.422
0.344
0.235
0.427
0.357
0.296
0.392
0.305
0.428
0.432
0.390
0.423
0.345
0.235
0.426
0.357
0.296
0.392
0.305

g,in
(°C]

97.5
102.0
103.6
101.9

99.2
102.3

09.4
100.5
101.9
102.1
100.2
100.0
101.2
103.4
102.0

98.8
102.7

93.8
100.6

tg,out
el

58.8
56.0
48.0
80.2
80.0
81.5
BL.8
B4.5
57.1
60.3
62.3
58.8
54.5
47.5
78.0
78.2
80.7
80.0
83.3

RH.

n

0.023
0.018
0.019
0.365
0.428
(.431
0.443
0.519
0.018
0.160
£.190
0,019
0.019
0.021
0.361
0.128
0.418
0.448
0.517

0.064
0.072
0.130
0.690
0.768
0.766
0.758
0.846
0.056
0.554
0.614
0.056
0.070
0.138
0.684
0.770
0.772
0.768
0.844



nr WCDII.
fee/s]

1 0.000

2 0.000

3 0.000

4 0.030

5 0.032

[ 0.032

7 0.034

8 0.037

9 0.000

10 0.014
11 0.015
12 0.000
13 0.000
14 0.000
15 0.036
18 0.037
17 0.037
18 0.040
19 0.042

Table G.3 Expetimental data for ¢

con

[°c]

3.6
63.5
66.6
63.9
71.6

46.3
48.8

63.2
63.8
64.8
66.7
69.3

Piot
[Pa]

103480
101480
101470
100810
106810
100810
102810
102810
102680
102680
100550
101480
101480
101480
100810
100810
100810
102810
102810

g,in =

EQ NTUl
- [~
—0.059 0.042
~0.027  0.041
=0.053 0.039
0000  0.042
~0.016  0.040
0.001 0.040
0.007  0.041
0.006 0.040
0.056  0.038
—0.043  0.030
~0.044  0.039
—0.062 0.022
—.068 0.021
—0.081 0.020
0.052 0.022
—0.041 0.021
-0,028 0.021
—0.030  0.021
—0.051 0.021
¥ 100°C,

NTU g Figure

!

0.787
0.911
1.285
0.602
0.687
0.792
0.628
0.732
0.751
0.682
G.738
0.761
0.811
1.288
0.610
0.696
0.800
0.635
0.741

255
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The relative error of the global energy balance is now defined as:

=3 Q- Q) (G.4)

@ (QE + Ql)

In table G.1 the experimental daia pertaining io an entry gas temperature tg i ©f abomt
¥

gin ¥ $0°C and in table G.3 the data

» 100°Q are included. The entry liquid temperature is always about

60°C are listed. In table (.2 those pertaining to t
pertaining to tg,in
20°C. The selected data for figures 4.7—4.10 are marked and the tables furthermore contain
NTU, and NTUg of the measurement, compnted as deseribed in §4.5.

One can readily see that the relative error EQ increases with increasing liquid flow
rates, which in turn imply amall differences between entry and exit lquid temperatures and
hence a substantial effect of the measurement uncertainty. It is interesting to observe that
for most tabled cases the relative error is negative. Thia indicates that energy is added to
the gas (which is theoretically not possible since the gas is hotter) and/or extracted from
the water by the surroundings (this is not possible either since for 4 number of cases the
water i8 colder than the surroundings). Tables G.1-(3.3 show that the negalive relative
error becomes less pronpunced, or even positive, for higher temperature levels at the liguid
side. Omne can therefore conclude that heat losses at the primary side cannot be responsible
for the negative energy balance. In particular when one realizes that the entry and exit
channels are well insulated. Accordingly, it is expected that a negative energy balance is

due to uncertainties of flow and temperature measurements,
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APPENDIX H: UNCERTAINTY ANALYSIS

The uncertainty analysis presented here follows the procedures described by Kline and
McClintock (1953) and Holman (1878). The primary experimental data, such as t),,
tg,out etc., is used to calculate some desired quantities, e.g. ¢, (,‘1 oyt 30d 8o on. The
uncertainty in these calculated results is obfained by congidering the uncertainties in the
primary measurements and is discussed below.

The uncertainty in a calculated result I, which is a function of the independent

variables i, iy,...., 1, TEds:
[%r=[£f;f‘%1*+[%—2%m+ EE

where dil, diz, ..... , di o Fepresent the uncertainties in the quantities il’ EOTITOITS Y Applying
equaiion (H.1) to equation (4.55) produces:

dcl,()ut 2 dtl,c:ut 2 dtg,in :
4 e g T
1,0t Lout  “Lin: g,in  “lin
(B2)

[ (tl,aut_ tg,in) c‘l‘tl,in ]2
(g in™ *1,in/ % out ~%1,10)

This expression constitutes the relative uncertainty in (1 ont ¥ # result of the uncertainties
tl

in the measured tl,in’ and tl,om.' represented by dtl,iu' dt and dtl,out’

tg,ill gim
respectively. These temperatnres are measured with mercury thermometers with
uncertainties of 0.1°C,

The relative uncertainty in g‘g, out follows from equations {4.55) and (H.1) as
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[dcg,nut]z - [ dtg,out ]3+ [ dtg,in ]2 +
g,0ut tg,t:mt " Hin tg,in " Min

(H.3)

[ (tgout gm) dtl in ]2
(tg,m )( g, out tl,m)

The uncertainty dt which is also measured with a mercury thermometer, amounts

g.out’
0.1°C. The dimensionless exit gas mass flow is defined by equations (4.56) and (G.8). The

actual condensate flow follows from:

m
Wmn = T ) (Hd:)

where m is the water which is weighed in the tank and T the time measured Applying

equation (H.1) to equations (4.56), (G.3) and (H.4) yields:

R (R L [t S

The uncertainty dm of the weighing—machine amounts 0.01 kg and ¢T of the chronometer
is 0.2 5. The total entry gas mass flow, which is divided over 96 gaps, is measured with an

orifice plate and follows from:

1
96 W, iy = P IDf (20 AP) (H.6)
see Eck (1957) and Ward—Smith (1980). In this equation Dy, represents the diameter of the
orifice (& 0,155 w). The coefficient p depends on a number of factors, such as the flow

Reynolds number, the cross—sectional area of the orifice divided by the crosa—sectional area
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of the approach pipe {& 0.8), and compressibility effects, but does depart appreciably from
a value of 0.74. Neglecting the uncertainties in the density of the mixture (which depends
weakly on composition and temperature) and the diameter of the orifice, equations (H.1)

and (H.6) yield:

(o - wn

The pressure difference is measured with an U—ube manometer under an angle with an
uncertainty dAP of 10 Pa.

The vapour mass fraction is given by:

et) = MePy, sur(RE (H.8)
RH (Mv - Mn) Pv,sat(t) + MpPeot

in which the relative humidity RH and temperature of the gas t are suppiied by a Vaisala
HMP—135Y device. The absolute toial pressure in the tunnel is measured with an U=tube
manometer. The saturation pressure of water—vapour is described by equations (C.1) and

(C.2). Applying eqnation (H.1) yields:

n" tot

[RH (Mv - Mn) Pv,s:-),t(t) + Mo Py

M_P ]2

(H.9)

[[dl"t]‘?[]2 + [dPtot ? + {de,sa.t dt "’]
RH Ptot di Pv,sat(t) t

The uncertainties dRH and dt amount 0.01 and 0.1°C, respectively. The uncertainty in

total pressure, dPtot’ is only 10 Pa (= 0.1 mbar).
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With the help of equations (H.2), (H.3), (¥.5) and (H.7), and (H.9), the uncertainty
bars of fignres 4.7—4.10 have been constructed. For the experimental data of figures 4.7 and

4.8 the maximum de,,, dcl,out.’ dgg:out and de’Dut amount 0.0015, 0.0034, ¢.0032 and

0.0019, respectively. For figure 4.8 they are 0.0050, 0.0023, 0.0021 and 0.0013. The

maximum dc, and de ot of the experiments depicted in figure 4.10
¥

in’ dcl Jout? Cg,nut
amount 0.0100, 0.0017, 8.0016 and 0.0012, respectively.

To compare the theoretical results with the experimental data one also needs to

know the mass flows of gas and liquid, in dimensionless form represented hy NTUg and

NTU}. The uncertainty dNTUg depends on dw dk dly, dk 4L, dB, dd,, dd,

g,in’ ‘p, g P’
and ddg, see equations (415), (4.4), (4.6) and (4.7). Neglecting uncertainties in the
physical and geometrical properties, which are much smaller than the uncertainiy of the

gas mass flow, squations (H.1) and (4.18) produce:

- (o =

The uncertainty dw fo]lc)ws from equation (H.7).
Neglecting again uncertainties in physical and geometrical properties equations

(4.14) and (H.1) yield:

[dNTUl]; _ [ﬂ]z . (H.11)
_NTUI W

The total liquid mass flow is measured with rotameter with an uncertainty 48 dwl of 0.026
kg/s, since the water is divided over 48 channel plates. For the experimental data of figure
4.7 the maximum dNTU, and dNTUg amount 0.001 and 0.011, regpectively. For figure 4.8
these values read 0.001 and 0.047, for figure 4.9 they are 0.001 and 0.010, and for figure
4.10 the maximum dNTU; and dN'I‘Ug amount 0.001 and 0.009.
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yapour pressure fanction of a pure substance

McAdam number, defined by equation (5.31) and (5.46)

net plate width {m]
intermediate dista.nqe discretisation poinis, see figure 4.5

vapour masa fraction

specific heat [Jkg K
diffusion coefficient [m% Y
hydraulic diameter; four times the cross—sectional/the perimeter (]
geometrical property of beat exchanger, se¢ figure 4.2 fm]

break—off error, equation (D.1)

relative energy balance error, equation (G.4)

saturation function, see equation (C.7)

friction coefficient

relation between ¢ and t in superheated region

acceleration due fo gravity [ms
mass transfer coefficient [kgm?s])

fog condition function, see equation (A.18)

latent heat of condensation [Tk}
heat transfer coefficient [Wm™2K "]
fog formation [egm 3]
Kutateladze number, ¢ p,con (tBat - tcon,w)/Hla.t

thermal conduetivity [Wma K]
net plate length ]

Lewis number, k/pcpm
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RH
Re

Se
Sh

modified Lewis numbet, k/pcp,vh
mass of one kmole of substance [ke}
dimensionless condensate formation, defined by equation (5.60)

dimensionless fog formation, defined by equation (2.30)

mass of condensate in welghing tank [kg]
mass flux at wall [kgm2s71]
fog masgs flux in film [kgm 257

nnmber of digeretisation points

number of transfer units, defined by equations (4.14), (4.15) or (5.30)
Nusselt number, hDy /k

turbulent power—law coefficient

pressure [bar)

Prandil aumber, 7c b Jk

heat flow {w]
heat flux at wall [Wm]
gas constant [TK-*%mole™)
relative humidity

Reynolds number, ﬁpDh /n
Series, see equation (4.20)
Schmidt number, /oD
Sherwood number, g1y /oD

abgolute temperature [X]
temperature [°cl
component of velocity in the direction of x [ma™T
component of velocity in the direction of y [msY

dimensionless mass flow, see equation (5.46)

mass flow [kgs ]
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X dimengionless coordinate, X=x/B

X coordinate (m]
Y dimensionless coordinate, Y=y/ ﬁa

v coordinate [m]
Z dimensionless coordinate, Z=x/L

5 coordinate [m]
Greek symbols

afy constants Antoine’s or RankineKirchhoffs’ equation

A dimensionless film thickness, defined by equations (5.29) and (E.13)

) flm thickness [m]
€ perturbation quantity

¢ dimensionless temperature, defined by equations (4.55) or (5.28)

7 dynamic viscosity [Pas]
<] correction factor

p density [kgm -9
T time [}
7 ghear atress (Nm
) dimensionless wall mass flux, defined by equations (1.20), (1.26) and (1.32)
Subscripta

a border of saturated and superheated region

b bulk

c diffusional

con condensate
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dew

—

B B =

Qut
pl

sat

tot

Superseripts

inv

dew point

fog

pertaining to numerical fog film model

pertaining to asymptotic fog lm model

pertaining to fog film model with a negligible induced velocity
pertaining to compounnd fog film model

gas mixture

channel plate/gas or condensate/gas interface

entry

liguid in channel plate

non—condensables

exit

channel plate

saturation

thermal

total

frictional

yapour

channel plate/coolant or channel plate/condensate interface

fully developed flow

inverse
mean mixed or "hulk"
reference

molar
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SUMMARY

In this thesis the heat and mass transfer in gas—liquid plastic heat exchangers, made up of
channel plates, is examined both theoretically and experimentally. To describe the transfer,
use is made of averaged (or bulk) temperatures and vapour mass fraction in the channels,
The employment of these quantifies results in two—dimensional crossflow models for
processes which are, in fact, three~-dimensional. In the simplest case, heat transfer without
condensation, this approach yields equations whose solufion is put forward in the
literature.

For pure steam condensation and partial water—vapour condensation on the channel
plates the heat and mass transfer follows from a local balance of energy fluxes to and from
the condensate surface, resulting in an implicit equation that relates the bulk states of both
fluids. The mass flux, induced by the vapour (corresponding to suction through a porous
wall), towards the condensate enhances the heat, mass and momentum transfer, The
classical film model, whick provides local correction factors, has been vsed to take this
effect into account. In chapier 1 ihese correction factors have been derived, as are
expressions for the alteration of bulk temperature, mass flow and pressure in a closed
channel. On account of its originality the latter equation has been compared extensively
with experimental and theoretical results of previcus investigators, and found in good
agreement.

Formation of fog, which may oceur upon partial condensation of water—vapour in
the heat exchanger, has been described in the chapters 2 and 8 by means of a flm analysis
and the saturation condition {4.¢. excluding the possibility of supersatnration). In chapter 2
the exact conditions for fog formation have been determined, while the coupled energy and
diffusion equation of the fog layer has first been solved numerically. Subsequently, an

agymptotic approxmation solution of this non-linear differential equation has been
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derived, resulting in analytical expressions for the correction factors.

In chapter 3 a fogged film is considered in the case of a negligibly small induced
velocity, yielding analytical correction factors as well, It is demonstrated heurigtically that
the prodnct of the resnlting correction factors (for fog only) and those of the classical film
model {for induced velocity only) ¢orrespond to the cotrection factors of chapter 2 (for the
eombined sitvation of fog and induced velocity). On the basis of this insight simple
componnd correction factors have been introduced. Both fog film models lead to new
procedures for computing condensers and evaporators, and to new expressions for the
alteration of bulk temperature and vapour mags fraction in combination with the creation
of bulk fog,

In the case of wall condensation and fog formation the fog models predict an
enhancement of sensible heat transfer and a redvetion of latent heat transfer, with the toial
heat transfer remaining unchanged, [n addition, a comparison has been made between the
basic fog film models and the theoretical and experimental results of foregoing studies,
concerning fog formation in the presemce of free and forced comveciion. This important
comparison confirms the heai and mass transfer predictions of the fog film model, thus
permitting the film model approach to fog formation.

In chapter 4 the theoretical and experimental investigations of heat and mass
transfer in plastic heat exchangers are described for cases in which there is no condensation,
partial water—vapour condensation or pure steam condensation. In the case of partial
water—vapour condengation the classical film model, the agymptotic fog film meodel of
chapter 2, and the compound fog film model of chapter 3, have been applied and compared
mutually. As the heat exchanger operates in crossflow and multiple liquid passes in the
heat exchanger are conceivable, the exit properties need not necessarily be in
thermodynamic equilibrium (this applies geperally to mixed gases of different
compositions). Universally applicable equations which describe the transition towards a

stable state have therefore been derived, resulting in practice in fog formation or
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dissclution.

Numerous computations reveal that a substantial part of the vapour entering the
heat exchanger condenses on the channel walls, and that the produced fog is less than
about 10 % of the total amount of condensed vapour. It is furthermoere observed that the
predictions of the agymptotic and compound fop model are identical, but that the latter
requires less computer time. The computer time of all the models is such that vse can be
g.in g
100°C and tl,in g 20°C) confirm quantitatively the predicted exit properties of the heat

made of 2 personal computer. The experiments performed (0 < ¢y § 040, 80°C < t

exchanger and qualitatively the formation of bulk fog. An important feature of partial
water—vapour and pure steam condensation is a negligible heat resistance of the condensate
layer. This implies that the heat exchanger models are applicable to all practical
orientations to the vertical. However, for vapours other than water—vapour, one cannot
assume an isothermal condensate film.

Hence, chapter 5 deals with the condensation of an arbitrary pure vapour on a
channel plate, including the interaction between condensate, plate, coolant and orientation
to the vertical. This analysis is an extension of the classical Nusselt condensation model,
which proceeds from an isothermal plate. To deseribe cocurrent, countercurrent and
crosscurrent condensation, non—linear differential equations have been derived and solved
in closed form. For all the three processes holds that they are governed by two
dimensionless numbers. A thorough asymptotic analysis yields a compact approximation
golution for the exit femperature of the coolant and formed condensate as a fumction of
both dimensionless nurmbers. For a broad range of both nnmbers the models are fonnd {0 be

in good agreement with the resulis of experiments performed.
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SAMENVATTING

In dit proefschrift wordt de warmte— en stofoverdracht in gas—vloeistof kunststof
warmtewissclaars, opgebouwd uit kanaalplaten, theoretisch en experimenteel ondeérzocht.
Voor de beschrijving van de overdracht wordt gebruik gemaakt van over de kanaalhoogten
gemiddelde (of bulk) temperaturen en dampmassafractie. Het gebruik van deze grootheden
resulieert in tweedimensionale kepisgtroom modellen van eigenlijk driedimensionale
processen. Voor het meest eenvoudige geval, warmtesverdracht zonder condensatie, leidt
deze aanpak tot vergelijkingen waarvan de oplossing in literatuur wordt aangedragen.

Bij pure stoomcondensatie en partiele waterdampcondensatie op de kanaalplaten
volgt de warmte— en stofoverdracht uit een locale balans van energiestromen van en naar
het condensaatopperviak, resulterend in  een impliciete vergelijking tussen de
bulkgroctheden van beide media. De stofflux van damp naar condensaat (corresponderend
met afpuiging door een poreuze wamd) leidt toi een verhoging van de warmte— en
stofoverdracht en uitgeoefende frictie. Voor de beschrijving van dit effect i3 gekozen voor
bet klassieke "Slmmodel”, dat voorziet in locale correctiefactoren voor de witgeoefende
frictie en overdracht van warmte en stof. In hoofdsiuk 1 zijn deze correctiefactoren afgeleid,
algsmede uitdrulkingen voor de verandering van bulkiemperatuur, massastroom en druk in
een gesloten kanaal. Vanwege zijn originaliteit is de laatstgenoerade uitgebreid vergeleken
met experimentele en theoretische resultaten van eerdere onderzoekers, en in goede
overesnstemming daarmes bevonden.

Mistvorming, bij partiele waterdampeondensatie in de warmtewisselaar kan dit
fenomeen optreden, is in de hoofdstukken 2 en 3 met een filmanalyse en de verzadigings—
conditie (dat wil zeggen: uitsluiting van oververzadiging) beschreven. In hoofdatuk 2 zijn de
precieze condities voor mistvorming vastgelegd, terwil de gekoppelde emergie- en

diffusievergelijking van de mistlaag in eerste instantie numerick is opgelost. Van dese



282

niet-lineaire differentiaalvergelijking is vervolgens een asymptotische benaderingsoplossing
bepaald, welke leidt tol analytische uitdrukkingen voor de correctiefactoren.

In hoofdstuk 3 wordt een mistfilmmodel beschouwd met een verwaarlooshaar kleine
stofflux, eveneens leidend tot analytische correctiefactoren. Heuristisch wordt aamgetoond
dat het produkt van deze correctiefactoren (alleen voor mist) em die van het klassicke
filmmodel (alleen voor stofflnx) overcenstemt met de correctiefactoren van hoofdstuk 2
{voor mist enm stofflux). Op basis van dit inzieht zijn samengestelde eenvoudige
correctiefactoren geinizoduceerd. Beide mistfilmmodellen leiden tot nienwe procedures veor
het berekenen van condensors em verdampers, en tot aliernatieve nitdrukkingen voor de
verandering van bulktemperatuur en bulkmaseafractie van de damp in combinatie met het
ontstaan van bulkmist.

De mistmodelilen voorspellen bij wandcondensatie en mistvorming een verhoging
van de voelbare warmteoverdracht en een reductie van de latente warmteoverdracht,
terwijl de totale warmteoverdracht ongewijeigd blijit. Een vergelijking is verder gemaakt
tussen de mistfilmmodel correctiefactoren en theoretische en experimentele resultaten van
voorgaande studies over mistvorming bij gedwongen en viije convectie. Deze belangrijke
vergelijking bevestigt de voorspellingen van warmte— en stofoverdracht door de mist—
correctiefactoren en daarmee de toelaatbaarheid van de filmmodelaanpak van mistvorming.

In hoofdsiuk 4 is daadwerkelijx de stof— en warmteoverdracht in lunststof
warmicwisselaars onderzochi voor het geval dat er geen condensatie, partiele waterdamp—
condensatie, of pure stoomeondensatie optreadt. Bij partiele waterdampeondensatie zijn het
klassieke filmomodel, het asymptotische mistfilmmodel van hoofdstuk 2, en het
samengestelde mistfilmmodel van hoofdstuk 3, toegepast en onderling vergeleken. Vanwege
het kruisstroomprincipe en de mogelijkheid van meerders vloeistof passages in de
warmtewisselaar behoeven de uittredegrootheden niet in thermodynamisch evenwicht te
zjn (dit geldt in het algemeen voor gasgen van verschillende samenstelling die worden

gemengd). Universeel toepasbare vergelijkingen zijn daarom afgeleid die de overgang naar
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een stabiele eindsituatic beschrijven, in de praktijk resulterend in mistvorming of
wmistoplosaing.

Uit talloze herekemingen blijkt dat een substantieel deel van de binnentredende
damp condenseert aan de wand, en dat de hoeveelheid gevormde mist minder dan ongeveer
10 % van de totaal gecondenseerde damp bedraagt. Verder blijkt dat de voorspellingen van
het asymptotische en het samenmgestelde migtmodel identiek zijn, maar dat de bemodipde
rekentijd van de laatste veel geringer is. De rekentijd van alle modellen ia dusdanig dat de
berekeningen door een personal computer kunnen worden uitgevoerd.

Uitgevoerde experimenten (0 £ g § 0.40, 60°C ¢ t nf 100°C en b ip & 20°C)

b
bevestigen kwantitatief de voorspelde u.ittredeg;mot.hedengvan de warmtewisselaar en
kwalitatief het ontstaan van bulkmist. £en belangrifk kenmerk van parliele
waterdampeondengatie en  pure stoomcondensatie 8 de verwaatloosbaar kleine
warmteweerstand van de condensaatlaag. Dit houdt in dat de warmtewisselaarmodelien
geldig zijn voor alle in de praksijk voorkomende standen ten opzichte van de gravitatie.
Voor andere dampen dan waterdamp kan echter niet worden aangenomen dat de
condensaatfilm isotherm is.

Hietop inhakend is daarom in hoofdstuk 5 de condensatie van een willekeurige pure
damp op een kanaalplaat ondersocht, met inbeprip van de interactie tussen comdemsaat,
plaat, koelvloeistof en orientatie ten opeichte van de gravitatie. Deze analyse is een
uitbreiding ven het klassieke Nusselt condensatiemodel, dat uitgaat van een isotherme
plaat. Voor meestroom—, tegenstroom— en kruisstroomcondensatie, zijn niet—lineaire
differentisalvergelijkingen afgeleid en analytisch opgelost. Voor de drie processen geldt dat
ze worden beschreven door iwee dimsnsieloze getallen. Een asymptotische analyse leidt tot
een handzame benaderingsoplossing voor de uittredetemperatuur van de koelvloeistof en
het gevormd condensaat als funetie van beide dimensieloze getallen. Voor een brede reeks
van beide petallen blijken d¢ modellen goed met de resultaten van wtgevoerde

experimenten overcen te stemmoen.
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STELLINGEN

behgrende bij het proefschrift

FILM MODELS FOR TRANSPORT PHENOMENA WITH FOG FORMATION

with application to plastic heat exchanpers and condensers

van H.J.H. Bronwers



Door de keuze van Le = 1 blijkt achteraf de aanname van een volledig verzadigde
film en mistvorming in de gehele film (K > 0) van Arefyev en Averkiyev (1979)
juist te zijn.

—  ArePyev, K. M. en Averkiyev, A.G. (1979), Effects of fog formation at the
evaporation surface on coefficients of heat and mass transfer during
evaporative cooling of water, Heat Transfer — Soviet Research, 11, 143 — 147

—  Hoofdstuk 2 en appendices A—C van dit proefschrifi.

Omdat de warmteweersiand van het condensaat veel kleiner is dan die van de

kunststof kanaalplaat kan de aanwezigheid van de eerste buitem beschouwing

worden gelaten. Een bijkomend voordeel is dat de condensatiemodellen geldig zijn

voor iedere stand van de kunstatof warmtewisselaar ten opzichte van de gravitatie.
—  Hoofdstuk 4 en appendix E van dit proefschrift.

De differentizalvergelijkingen die de meestroom en tegenstroom condensatie van een
pure damp op platen en pijpen beschrijver kunnen, in tegenstelling tot de bewering
van Faghri en Sparrow (1980), analytisch worden opgslost.

—  Paghri, M. en Sparrow, EM. (1§80), Parallel-flew and counter—flow
condensation on an internally cooled vertical tube, Int. J. Heat Mass
Transfer, 23, 559 — 562,

—  £51-§53 van dit proefschrift.

Voor pure verzadigde dampeondensatie op platen en pijpen geldt dat de hoeveelheid
opgenomen warmte door het koelwater slechts gelijk is aan het produkt van
gevormd condensast en latente warmie indien de onderkoeling van het condensaat
verwaarlooshaar is (ofwel het Kutateladze getal Ku << 1).
—  Brouwers, H.JH. _(1989), Film condensation on nonigothermal vertical
plates, Int J. Heat Mass Transfer, 32, 655 — 663,
w 5.2 en §5.3 van dit proefschrift.

De afbreekfout van Mason’s recksontwikkeling is kleiner dan deze zelf verwachtie.
—  Mason, J.L. (1954), Heat transfer in crossflow, Proc. Appl. Mech. 2nd. U.5.
Nat. Congress, 801 — 803.
—  Appendix D van dit proefschrift.




10.

11.

De weglating door Johnstone e.a. (1950) van de¢ filmmodel correctiefactor veor
diffusie in de hellingconditie voor mistvorming verklaart de discrepantic van deze
conditie met hun waarnemingen van mistvorming in waterdamp—stikstof mengsels.
—  Johnstone, H.F., Kelley, M.D. en McKinley, D.L. (1950}, Fog formation in
cooler—condensers, Ind. Eng. Chem., 42, 2208 — 2302,
—  Appendix F van dit proefschrift.

In de impulsbalans wordt de acceleratieterm/deceleratieterm gerepresenteerd door
(pu2),, en niet door pud zoals voorgesteld door Wang en Tu (1988), hoewel de
geintroduceerde fout slechts een paar procent is voor incompressibele turbulente
stroming.
—  Wang, C.Y. en Tu, C.J. (1988), Effects of non—condensabie gas on laminar
fitm condensation in a vertical tube, Int. J. Heat Mass Transfer, 31, 2839 —
2345,
—  Ward-Smith, A.J. (1980), Internal fluid flow, Clarendon Press.

Dat jemand een proefschrift kan schrijven wil niet altijd zeggen dat de promovendus
stellingen kan formuleren die geen betrekking hebben op het proefschriftondetwerp.
Het vereisen van deze stellingen bij een proefschrift dient dan ook heroverwogen te
worden.

Een as in een hydrodynamisch glijlager kan eerder instabiel worden dan men op
grond van een lineaire stabliteitsanalyse zow mogen verwachien.
= Crooljmans, M.T.M., Brouwers, HJ.H., van Campen, D.H. en de Kraker, A,
(1990), Limit cycle predictions of a nonlinear journal-bearing system,
Journal of Engineering for Industry, 112, 168 — 171

Het verdient asnbeveling numerieks methoden niet te gebruiken voor het oplossen
van fysische problemen alvotens esn asymptotische analyse een benaderingsoplossing
heeft witgesloten.

Onderzoekers dienen bedacht te gijn op het toepessen van denkbeelden en theoriedn
op een bradet terrein dan waarvoor ze oorspronkelijk zijn ontwikkeld en getoetst.



12. De omvang van de overheidsbemoeienis waatmee de samenleving wordt
geconfronteerd staat in schril contrast met het geringe aantal effectiviteits—
onderzoeken dat eraan wordt vastgekoppeld.

Arnhem, september 1990





