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Packing fraction of trimodal spheres with small size ratio: An analytical expression
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In previous papers analytical expressions were derived and validated for the packing fraction of bimodal hard
spheres with small size ratio, applicable to ordered (crystalline) [H. J. H. Brouwers, Phys. Rev. E 76, 041304
(2007); 78, 011303 (2008)] and disordered (random) packings [H. J. H. Brouwers, Phys. Rev. E 87, 032202
(2013)]. In the present paper the underlying statistical approach, based on counting the occurrences of uneven
pairs, i.e., the fraction of contacts between unequal spheres, is applied to trimodal discretely sized spheres. The
packing of such ternary packings can be described by the same type of closed-form equation as the bimodal case.
This equation contains the mean volume of the spheres and of the elementary cluster formed by these spheres;
for crystalline arrangements this corresponds to the unit cell volume. The obtained compact analytical expression
is compared with empirical packing data concerning random close packing of spheres, taken from the literature,
comprising ternary binomial and geometric packings; good agreement is obtained. The presented approach is
generalized to ordered and disordered packings of multimodal mixes.
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I. INTRODUCTION

Models of ternary random packings were reported in [1–6],
and experiments in [7,8]. In the present paper ternary sphere
packings with small size ratio are studied, based on the
approach as used for bimodal spheres [9]. In [9] analytical
equations were derived for the packing of bimodal hard spheres
with small size ratio, using a statistical approach by counting
the fraction of uneven pairs. The derived packing fraction,
applicable to ordered (crystalline) and disordered (random)
arrangements, appeared to be in close agreement with compu-
tational and empirical hard sphere data from the literature. Here
it is shown that the underlying approach, the volume distortion
introduced by unequal sphere pairs, can be extended to assem-
blies consisting of three (and more) discretely sized spheres
with small size ratio. The resulting packing expression, which
does not contain any fitting parameter, is validated by an ex-
tensive comparison with published empirical ternary random
close packing fractions, and found to be in good quantitative
agreement.

II. PACKING FRACTION OF TRIMODAL
SPHERE PACKINGS

In order to study the trimodal packing fraction of hard
spheres, in this section the theory [9] on bimodal sphere
packings with small size ratio is extended. For an arrangement
of trimodal spheres, the mean sphere volume readily follows
as
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with X as the number fraction and the subscripts 1, 2, and 3
referring to the large, medium, and small spheres, respectively.
Analogous to the bimodal arrangement, the average volume,
using the statistically probable combinations of the three

sphere sizes [9,10], follows as
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with n the number of spheres that form the elementary building
block of the considered packing arrangement. By definition the
characteristic volume V and length � is related to the sphere
diameter and monosized packing fraction f1 as �3

i = Vi =
π
6 d3

i /f1 for i = 1, 2, or 3 [11]. The first terms appearing in the
summation yield
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which constitutes the expected value of the probability mass
function of the trinomial distribution.

In Eq. (2) the lattice distortion is accounted for by the
terms containing the factor λij , which allows for the spacing
resulting from the combination of the unequal spheres i and j ;
uneven pairs of spheres are considered as distorted contacts.
This distortion is only found in the case where unequal spheres
are present in a building block; for blocks that do not contain
spheres of type i and/or j , it holds that λij = 0.

As the size ratios of the three spheres are small, it can
be assumed that the large scale structure of the system is
not changed, and it is supposed that the volume distortion
is a linear function of the volume mismatch. The distortion
indeed tends to zero when �3

i /�
3
j tends toward unity, that is,

when a monosized system is obtained and V should tend
to �/f1. For the bimodal packings (X3 = 0 and hence
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λ13 = λ23 = 0), it was seen that the distortion parameter λ12

is proportional to the number of distorted contacts divided by
the total number of contacts of the considered characteristic
volume. A combinatorial computation of the possible bi-
modal configurations for ordered (crystalline) and disordered
(random) arrangements showed that in general terms λ12

reads [9]

λ12 = C
b12(i)

2bt
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(
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where C is a proportionality constant. Equation (4) is also
applicable when the thermodynamic limit is taken, with i and
n going to infinity and i/n = constant. This is a different
interpretation to the case where n is taken to be a small constant
which is the smallest identifiable cluster size or unit cell size
in the case of ordered arrangements. So, it appears that the
equations are valid not only for regular (crystalline) structures,
but also for irregular (random) structures where the number of
spheres may be infinite [9].

The bimodal insight can also be used in considering the
trimodal system. The distortion between large spheres (d1) on
the one hand and the combined medium (d2) and small (d3)
spheres is proportional to
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and likewise, between medium and the two other size
groups; between small and the two other size groups it

reads
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Since

λ12 + λ13 = λ1(2+3),

λ12 + λ23 = λ2(1+3), (7)

λ13 + λ23 = λ3(1+2),

there are three equations with three unknowns. Inserting
Eqs. (5) and (6) and solving this set of linear equations yields
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These equations confirm that λ12 = 0 when i = 0, that
is, when no medium sized spheres (d2) are present. Also in
the case of i + k = n this λ12 distortion is not occurring, as
then large spheres (d1) are absent in the packing. Similar
considerations hold for λ23 when i = 0 and/or k = 0, and
for λ13 when k = 0 and/or i + k = n; see Eq. (8). This is the
reason that the summations of Eq. (2) need modified lower and
upper bounds:
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and in view of X1 + X2 + X3 = 1. Equation (10) applies,
mutatis mutandis, also to the two other summation terms
featuring in Eq. (9). Hence, Eq. (2), inserting Eqs. (3) and
(9), becomes
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Apparently, the distortion between i and j spheres can
generally be accounted for by the terms XiXj , i.e., the product

of the two number fractions. This expression is similar as
for the bimodal system, where this term reads X1(1–X1) =
X1X2 [9].

Introducing the size ratios,
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, (12)

using X3 = 1–X1–X2, and inserting Eq. (1) yields as scaled
trimodal packing fraction,
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To obtain this equation, � and V were divided by d3 and �3,
respectively. For u12 and u23 tending to unity this expression
reduces to
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The coefficient C, which is a nonadjustable parameter, depends
on the type of packing, crystalline (C = 1) [10] or random
(C = −0.096) [9]. For C > 0 the volume expands (compared
to the mean sphere volume) and the packing fraction decreases,
and for C < 0 the volume contracts. The aforementioned
C values and the resulting effect on polydisperse packing
reflect the different characteristics of crystalline and random
packings. Here, this coefficient appears in the last three terms
of Eq. (11); this distortion expression governs the volume
distortion involved with three sphere sizes.

III. MODEL APPLICATION

In this section the derived packing expression, for small
size ratio, is compared with empirical data concerning random
close sphere packings. In the considered trimodal random

sphere packings the subsequent sphere sizes have a constant
ratio u, so

u12 = u23 = u. (15)

The packing of such systems, with u = 2, was measured
by [8] (see also [6] for the ternary diagram) concerning the
combinations of 7-, 14-, and 28-mm steel spheres. Two types
of distributions are considered here, viz., a binomial and a
geometric. Also the bimodal packing consisting of small and
large spheres only is addressed as reference.

A. Binomial distributions

For the binomial distribution of n sphere sizes and proba-
bility p, their number fractions for i = 1, 2,. . ., n, are given as

Xi =
(

n − 1
i − 1

)
pn−i(1 − p)i−1. (16)

For the trimodal distribution holds n = 3 and i = 1, 2, and 3,
and hence it follows that X1 = p2, X2 = 2p(1 − p), and X3 =
(1 − p)2. Substituting these number fractions and Eq. (15) into
Eq. (13) yields

κ

f1

= [p(u3 − 1) + 1]2

[p(u3 − 1) + 1]2 + Cp(1 − p)[2p2(u6 − u3) + p(1 − p)(u6 − 1) + 2(1 − p)2(u3 − 1)]
. (17)

For a number of p values the number fractions Xi are
computed (Table I). The experimental void fractions presented
in a ternary diagram [6,8] of steel ball packings are related
to volume fractions. Accordingly, invoking that all spheres
possess the same apparent density, the volume fractions are
computed from the number fractions using

ci = Xiu
3(3−i)

X1u6 + X2u3 + X3
, (18)

for i = 1, 2, and 3, and the ci are included in Table I as
well, using u = 2. In the diagram [8] the pertaining measured
trimodal void fraction j is read off, and included in Table I as
well, together with the trimodal packing fraction κ ( = 1 − j ).

In Fig. 1, Eq. (17) is set out, using C = −0.096 [9] and u =
2. Also the empirical data from [6,8] as listed in Table I, scaled
with ϕ1 = 0.364 [8] and hence f1 = 0.636, are included in this
figure. One can see that upon combining three sphere sizes the
maximum packing increase is 7%. For the bimodal binomial
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TABLE I. Ternary void (j ) and packing (κ) fractions as measured
by Jeschar et al. [8] using discretely sized steel balls (d1 = 28 mm,
d2 = 14 mm, and d3 = 7 mm, i.e., u12 = u23 = 2) for compositions
that follow a binomial number distribution with probability p.

p X1 X2 X3 c1 c2 c3 j a κa

0 0 0 1 0 0 1 0.364 0.636
0.05 0.0025 0.095 0.9025 0.088 0.417 0.495 0.332 0.668
0.15 0.0225 0.255 0.7225 0.343 0.485 0.172 0.322 0.678
0.25 0.0625 0.375 0.5625 0.529 0.397 0.074 0.325 0.675
0.5 0.25 0.5 0.25 0.790 0.198 0.012 0.335 0.665
0.75 0.5625 0.375 0.0625 0.921 0.077 0.002 0.350 0.650
1 1 0 0 1 0 0 0.364 0.636

aReference [8].

system, which is the most simple binomial distribution (X1 =
p and X2 = 1 − p), the maximum increase was about 5% [9].
Here again the agreement between ternary packing model and
empirical data is good, though, for some of the computed
packing fractions (between p = 0.25 and 0.75) the agreement
would be better if p would be replaced by p + 0.15.

B. Geometric distributions

Next the packing of geometrically composed sphere mixes
of n sizes is considered, i.e., the mixes that obey a power-law
distribution for which it holds that [12]

ci = ci

c1 + c2 + · · · + cn−1 + cn

= rn−icn

rn−1cn + rn−2cn + · · · + rcn + cn

= rn−i

1 + r + r2 + · · · + rn−1
, (19)

1.08
eq. (17)κ

1.06

[10]
1f

1.04
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1.00
0 0.25 0.5 0.75 1p

FIG. 1. (Color online) Random close packing fraction of bino-
mially distributed trimodal spheres (size ratio u = 2), divided by
the monosized packing fraction, as a function of the probability
p. The graph contains Eq. (17) with C = −0.096, and measured
values reported by [8], which are listed in Table I (and divided by the
measured monosized packing value f1 = 0.636).

and for spheres with the same apparent density the pertaining
number fractions are
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[see also Eq. (15)], and hence
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Equation (22) reveals that the number distribution is also
geometric; hence the spheres of subsequent size groups have
the same volume (c) and number (X) ratios.

For n = 3 and i = 1, 2, and 3 the pertaining volume
concentrations and number fractions are
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Substituting the resulting X1, X2, and X3 into Eq. (13), and
using Eq. (15), yields
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see Eq. (23) for c1 and X1. In Fig. 2, Eq. (24) is set out versus
α, defined as

α = logu r, (25)

1.10κ

1.08
1f

1.06

1.02

1.04

[10]

eq. (24)

1.00
-3 -2 -1 0 1 2 3 4 5

eq. (24), r replaced by 2r

α

FIG. 2. (Color online) Random close packing fraction of geomet-
rically distributed trimodal spheres (size ratio u = 2), divided by the
monosized packing fraction, as a function of the power α. The graph
contains Eq. (24) with C = −0.096, as well as Eq. (24) shifted by
replacing r by 2r , and measured values reported by [8], which are
listed in Table II (and divided by the measured monosized packing
value f1 = 0.636).
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TABLE II. Ternary void (j ) and packing (κ) fractions as measured
by Jeschar et al. [8] using discretely sized steel balls (d1 = 28 mm,
d2 = 14 mm, and d3 = 7 mm, i.e., u12 = u23 = 2) for compositions
that follow a geometric volume distribution with power α, computed
using Eq. (25).

α r c1 c2 c3 j a κa

−1.58 1/3 0.077 0.231 0.692 0.334 0.666
−1 1/2 0.143 0.286 0.571 0.323 0.677
0 1 1/3 1/3 1/3 0.313 0.687
1 2 0.571 0.286 0.143 0.308 0.692
1.58 3 0.692 0.231 0.077 0.313 0.687
2 4 0.762 0.190 0.048 0.320 0.680
2.32 5 0.807 0.161 0.032 0.330 0.670
3 8 0.877 0.109 0.014 0.341 0.659
4 16 0.938 0.058 0.004 0.358 0.642

aReference [8].

using C = −0.096 [9] and u = 2. The parameter α is the power
appearing in the function F that governs the cumulative finer
fraction of a geometric distribution [6,12]:

F (di) = dα
i − dα

n+1

dα
1 − dα

n+1

(α �= 0) ;

(26)

F (di) = ln di − ln dn+1

ln d1 − ln dn+1
(α = 0) .

For a number of r (and hence α) values, the pertaining
ci are included in Table II as well, using Eq. (23). In the
ternary packing diagram the pertaining measured trimodal void
fraction j is read off [6], [8], and included in Table II as well,
together with the trimodal packing fraction κ (= 1 − j ). A
number of these measured values can also be found in [6].
The listed values of Table II, scaled using ϕ1 = 0.364 [8] and
hence f1 = 0.636, are included in Fig. 2. This figure shows a
good agreement between model and measured data. As some
of the model predictions seem to be shifted from experimental
data, another model line is shown whereby α is moved one
unit to the left (implying a multiplication of r by 2). After
this shift the agreement with some of the measured values is
better, which implies that when in Eq. (24) r is replaced by 2r ,
the accuracy of model prediction for these cases is increased.
Probably coincidentally, this factor of 2 is identical to the size
ratio of the subsequent size fractions (u). It noteworthy to
point out that, though the shifting constitutes an improvement
for some of the data, the original (nonshifted) predictions as
such are in good agreement with the data as well.

C. Bimodal mixes with size ratio u2 = 4

In the previous subsections packing of trimodal systems
were presented, whereby u12 = u23 = 2. The agreement was
good, but this not so obvious. The size ratio between the largest
and smallest spheres, u13 = u12u23 = u2 = 4, is namely not
close to unity, whereas the current model is based on the
approximation u − 1↓0. To explore the application limit of the
presented model, the model is applied to the bimodal packing
of largest and smallest spheres only, so by omitting the medium
sized sphere (d2), hence c2 = 0. From Eq. (13) it follows that

1.20
eq. (27)η

1.15
[10]

1f

1.10

1.05

1.00
0 0.25 0.5 0.75 1c1

FIG. 3. (Color online) Random close packing fraction of bimodal
mixes, divided by the monosized packing fraction, as a function
of the large volume fraction c1. The graph contains Eq. (27) with
C = −0.096 and size ratio u12u23 = u2 = 4, and measured values
reported by [8], divided by the measured monosized packing value
f1 = 0.636.

the scaled bimodal packing fraction, termed η/f1 [9,10], reads

η
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(
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3
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) + 1

X1
(
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3
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) + 1 + CX1X3
(
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3
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)
= X1(u6 − 1) + 1

X1(u6 − 1) + 1 + CX1X3(u6 − 1)
; (27)

see Eq. (15). This equation is compared with the measured
bimodal void and packing fraction of [8], the values can be
found along one edge (compositional range from 7 to 28 mm)
of their ternary diagram. In Fig. 3, their scaled bimodal packing
values are included, as well as Eq. (27), whereby the number
fraction is computed from the volume fraction by using

X1 =
c1

d3
1

c1

d3
1

+ c3

d3
3

= c1

c1
(
1 − u3

12u
3
23

) + u3
12u

3
23

= c1

c1(1 − u6) + u6
; (28)

see Eqs. (12), (15), (21) and in view of c1 + c3 = 1.
Figure 3 reveals that the current model is no longer able

to predict the packing fraction of these bimodal mixes. The
maximum measured packing increase is about 16%, which
is about double the figure as measured for the trimodal
binomial and geometric packings presented previously (Figs. 1
and 2). Here, in the bimodal case, the model underestimates
the measured values by about 50% (Fig. 3). So, in the trimodal
case the model is still able to predict the packing fraction,
which can be contributed to the present medium sphere size
(d2) which “bridges” the small and large spheres. This enables
the maximum size ratio (d1/d3) of 4 to be covered. On the
other hand, the model cannot cover this size ratio anymore
when a bimodal mixture is concerned.

The maximum size ratio of 4 studied here might be the
reason that, though the model of the ternary binomial and
geometric packings performed well, it is not as good as for
the bimodal system with size ratio 2 [9], as the discussed
deviations and shifts for some ternary compositions reveal.
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But again it should be mentioned that also without these
shifts the agreement between predictions and reported data is
good, especially when it is realized that the model is entirely
based on a theoretical analysis and no adjustable parameters
are introduced. A comparison of the bimodal model with
measured data concerning spheres with a smaller size ratio
of 2 (consisting of mixes of 7- and 14-mm and of 14- and
28-mm spheres [8]), however, shows the best agreement [9].

IV. CONCLUDING REMARKS

The present paper reveals that the distortion involved
with uneven pairs of spheres (with small diameter ratio u)
in a multimodal mix is governed by the product of their
number fractions [13]. Hence, the packing fraction of trimodal
arrangements of randomly placed hard spheres is described
with a similar model as for bimodal packings, presented in [9].
This bimodal packing model proved to be accurate up to u = 2.

Also the trimodal packing fraction, Eq. (9), is characterized
by a closed-form equation containing the number concentra-
tion of the three components (actually two, X1 and X2), the two
sphere diameter ratios u12 and u23, the expansion coefficient
C and the products X1X2, X1X3, and X2X3. The magnitude
of C is known for both ordered (crystalline) and disordered
(random) packings, viz., C = 1 and C = −0.096, respectively,
for which assemblies the current model is thus applicable.

This expression of trimodal spheres, with small size
ratio, is compared extensively with empirical random close
packing information from the literature, whereby binomial and
geometric mix compositions are considered. Good agreement
is found for these arrangements for which u12 = u23 = 2,
i.e., subsequent size groups have the same diameter ratio.
It is noteworthy that model and used parameters are based
on physical principles, and no adjustable parameter has been
introduced anywhere to achieve the presented results. It also
follows that the presented model is accurate when the medium
size fraction is present in the mix. In the absence of this
fraction, resulting in a bimodal discretely sized mix with a
size ratio of 4, the model loses its validity. In other words,
the presented approach is applicable to packed systems where
the size ratio of largest and smallest may be large, as long as
there are sufficient intermediate fractions present such that the
size ratio of two subsequent size fractions is smaller than 2.
As discussed previously, the distortion caused by size groups
i and j is then governed by CXiXj (�3

j − �3
i ), with �j > �i .

The multimodal mix packing model is not valid only for
random packings, but also for ordered (crystalline) packings.
It is therefore also possible to use the packing fraction
expressions of ordered and disordered packings to determine
which arrangement yields the highest packing fraction. As
demonstrated for bimodal mixes [10], such a topological
comparison will yield amorphization thresholds.
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