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Random packing fraction of bimodal spheres: An analytical expression
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In previous papers analytical equations were derived and validated for the packing fraction of crystalline
structures consisting of bimodal randomly placed hard spheres [Phys. Rev. E 76, 041304 (2007); 78, 011303
(2008)]. In this article it will be demonstrated that the bimodal random packing fraction of spheres with small
size ratio can be described by the same type of closed-form equation. This equation contains the volume of
the spheres and of the elementary cluster formed by these spheres. The obtained compact analytical expression
appears to be in good agreement with a large collection of empirical and computer-generated packing data, taken
from literature. By following a statistical approach of the number of uneven pairs in a binary packing, and the
associated packing reduction (compared to the monosized limit), the number fraction of hypostatic spheres is
estimated to be 0.548.
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I. INTRODUCTION

The random packing of spheres is an old physical puzzle
and has received much attention the past few years (see, e.g.,
Refs. [1,2]). Attention has been paid to revealing packing ge-
ometries and the route to understanding liquids and amorphous
materials and glasses. Countless numerical and experimental
studies have confirmed a common lower limit for the random
close packing (RCP) value of disordered frictionless sphere
packings, f1, having a consistent value of about 0.64 in three
dimensions [3–17]. This reproducible value indicates that RCP
corresponds to a well-defined “geometrical structure,” yielding
the perception that RCP of spheres should have a common
structure. Mathematically, the RCP state is difficult to define
because by introducing order, higher packing factions can be
obtained. In Ref. [18] the “maximum random jammed” (MRJ)
state was defined by configurations with minimal values of typ-
ical order parameters. Several studies have been executed with
the aim to reveal a repeating geometric structure of RCP, often
assemblies of face-adjacent tetrahedra (“polytetrahedra”) that
result in quasicrystal structures [19–21]. Also in (metallic)
glasses and colloidal suspensions, which resemble hard sphere
packings, local ordering was observed [22–31].

In the present paper binary random sphere packings with
small size ratio are studied, following the same approach as
in Refs. [1,2]. This study also reveals statistical information
concerning the structure of randomly packed monosized
spheres, in particular the fraction of hypostatic spheres in a
random arrangement, and the minimum number of spheres
involved in a cluster (or building block) of randomly packed
spheres.

In Refs. [1,2] analytical equations were derived for the
packing fraction of crystalline structures consisting of bimodal
randomly placed hard spheres with small size ratio (dL/dS =
u). The bimodal packing fraction was derived for the three
crystalline cubic systems using a statistical approach of the
uneven pairs. The derived lattice parameters of the bimodal
unit cell appeared to be in close agreement with empirical
hard sphere data from literature. To derive these equations,
the number of involved spheres in the unit cell of the
considered crystalline structure was relevant. It is shown that
the underlying approach for studying the volume distortion

introduced by unequal spheres pairs is also applicable to
asymmetric and nonregular sphere assemblies, as is the case
in randomly packed spheres. Furthermore, it is shown that
the obtained expression for the bimodal packing fraction of
the hard sphere lattices is very similar to the one of bimodal
random close packings [32,33], which as such asserts the
conjecture that they also possess a typical repeatable structure.
Though, in the limit of u↓ 1, the bimodal packing fractions
of both crystalline and random packings are both parabolic
functions of the large (or small) sphere concentrations (cL

and cS , respectively, cL + cS = 1), a crystalline packing
fraction decreases and a random packing fraction increases
upon combining two sphere sizes. Based on these insights,
and building on the success of the original crystalline packing
fraction function, an analytical expression for the RCP fraction
of spheres is put forward, which is entirely governed by
physically defined parameters (such as the monosized packing
fraction value and the size ratio). This expression, which does
not contain any fitting parameter, is validated by an extensive
comparison with published empirical and computer-generated
packing fractions, and found to be in good quantitative agree-
ment. Subsequently, the model is applied to bimodal random
loose packing (RLP) and generalized to all states of random
packing.

Finally, the combinatorial approach to derive the packing
fraction of binary crystalline structures, and here applied
successfully to derive the RCP fraction of these spheres, is
employed to study the nature of RCP of monosized spheres.
Using the known bimodal packing increase, caused by volume
contraction, the number fraction of hypostatic spheres involved
in random packings (from RLP to RCP) is assessed.

II. BIMODAL CRYSTALLINE SPHERE PACKINGS

In order to study the bimodal RCP fraction of spheres, in
this section the theory on crystalline structures consisting of
bimodal randomly placed hard spheres, with small size ratio
(dL/dS = u), is recapitulated and further elaborated. As a first
step, the stacking of equal spheres in a lattice structure is
addressed. The packing fraction follows from the number of
spheres N with diameter d in the unit cell, the sphere volume
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�, and the unit cell volume Vcell:

f
cp

1 = N�

Vcell
= N π

6 d3

�3
, (1)

with � as lattice constant or lattice parameter [1,2]. For
example, for the fcc structure holds N = 4 and � = 21/2d,

for the bcc structure N = 2 and � = 2d/31/2, and for the
sc structure holds N = 1 and � = d, yielding as monosized
packing fractions f fcc

1 = 21/2π/6, f bcc
1 = 31/2π/8, and f sc

1 =
π/6, respectively.

For an arrangement of bimodal spheres, the mean sphere
volume readily follows as

� = XL�L + XS�S = XL�L + (1 − XL)�S

= π
[
XLd3

L + (1 − XL)d3
S

]
6

, (2)

with X as the number fraction and the subscripts S and L

referring to small and large spheres, respectively. The cell
volume, using the statistically probable combinations of small
and large spheres [1,2], followed as

Vcell =
n∑

i=0

{ (
n

i

)
Xn−i

L (1 − XL)i

×
[
n − i

n
�3

L + i

n
�3

S + λi

(
�3

L − �3
S

)]}
, (3)

with n the number of spheres that form the elementary building
block of the crystal structure considered. In Eq. (3), the lattice
distortion is accounted for by the factor λi , which allows for
the spacing resulting from the combination of the large and
small spheres in the cells in which they both appear (1 � i �
n − 1). Their size ratio u is small, so that it can be assumed
that the large-scale structure of the system is not changed
as u varies, and it is supposed that the volume distortion
is a linear function of the volume mismatch. The distortion
indeed tends to zero when �3

S tends to �3
L, that is, when a

monosized system is obtained and Vcell should tend to �3
S =

�3
L. The distortion parameter λi is furthermore proportional

to the number of distorted contacts (bLS) divided by the total
number of contacts (bt ) of the unit cell [2]. Uneven pairs of
spheres are considered as distorted contacts. A combinatorial
computation of the possible bimodal configurations for the fcc,
bcc, and sc lattices showed that in general terms λi reads

λi = C
bLS(i)

2bt

= C

( n − 2
i − 1

)
( n

i

)

= C
i(n − i)

n(n − 1)
(1 � i � n − 1), (4)

where C is a proportionality constant, which value follows
from a boundary condition (as seen below). The natural
question is whether Eq. (4) holds for every unit cell consisting
of two types of spheres and sphere pairs. This question is
answered affirmatively by a rigorous mathematical proof based
on basal combinatorial and probabilistic counting arguments
[34,35], which is recapitulated here.

Assume we have a contact network involving n spheres,
of which i spheres are small. Choose one arbitrary contact
involving spheres (really, vertices in a network) u and v. The

total number of choices of spheres for u and v is n(n − 1) by
inspection, whereas for a distorted contact we can choose either
u to be small (i choices) and v to be large (n − i choices), or
vice versa, resulting in 2i(n − i) possibilities. This gives us
bLS(i)/bt = 2i(n − i)/[n(n − 1)], independent of the choice
for u and v, and yielding Eq. (4).

Surprisingly, this proof shows that the distortion depends
only on the number of spheres and pairs of the sphere cluster,
but not on the way the contacts are distributed among the
spheres in this cluster. To summarize, by counting the possible
uneven pairs to bLS in an alternative way [34,35] it is affirmed
that Eq. (4) is actually a generic formula for all clusters (and
unit cells) that consist of two types of spheres. Inserting Eq. (4)
in Eq. (3) yields

Vcell = XL�3
L + (1 − XL)�3

S + CXL(1 − XL)
(
�3

L − �3
S

)
. (5)

Equation (5) is also applicable when the thermodynamic limit
is taken, with i and n going to infinity and i/n = constant.
This is a different interpretation to the case where n is taken
to be a small constant which is the smallest identifiable cluster
size or unit cell size. In Refs. [1,2] the smallest building block
of sc, bcc, and fcc lattices were identified, in order to be able
to analyze all possible configurations, their probabilities, and
their contribution to the distortion. The disadvantage of this
approach was that it involved a lot of computations and that
one needs to do a separate careful analysis for every different
building block. From the generic solution presented here, this
limitation is not needed anymore, so sphere arrangements
comprising multiples of n and N would yield the same
conclusion and equations [Eqs. (4) and (5)]. Furthermore,
it appears that both equations are valid not only for regular
(crystalline) structures as examined in Refs. [1,2], but also
for irregular (random) structures where the number of spheres
may be infinite, a feature that later will be utilized in examining
RCP.

The two first terms on the right-hand side of Eq. (5)
correspond to the so-called Retger’s equation [1,2,36,37].
Combining the bimodal sphere volume, Eq. (2), with the
bimodal cell volume, Eq. (5), and using the size ratio

u = �L

�S

= dL

dS

, (6)

yields one general expression that governs the ratio of bimodal
packing fraction η and unimodal packing fraction f1:

ηcp

f
cp

1

= XL(u3 − 1) + 1

XL(u3 − 1) + 1 + C (1 − XL)XL(u3 − 1)
, (7)

where the superscript cp refers to crystalline packing. The
numerator in this equation constitutes the mean sphere volume
and the denominator the mean volume of the packing, both
dimensionless.

In Refs. [1,2,38,39], it is assumed that upon the introduction
of small spheres in a crystalline structure of large spheres
only, it will not change the cell volume, in other words, each
small sphere will be able to rattle in the cage formed by the
substituted larger sphere. Mathematically, this implies that
the first derivative of the cell volume with respect to XL at

032202-2



RANDOM PACKING FRACTION OF BIMODAL SPHERES: . . . PHYSICAL REVIEW E 87, 032202 (2013)

8

9
C = 0

C = 1

3

6

7
C = - 0.096

C = - 1

S

3

4

5

1

2

0 0 2 0 4 0 6 0 8 1X. . . .
L

FIG. 1. Scaled mean packing volume [(�/�S)3] following Eq. (5),
for C = − 1, − 0.096, 0, and 1 versus the number fraction of large
spheres in a bimodal mix. The line pertaining to C = 1 corresponds to
the cell volume of crystalline sphere packings [1,2], C = 0 to Retger’s
equation [1,2,36,37], C = − 0.096 to RCP and RLP of spheres, and
C = − 1 to a sphere arrangement where all spheres can be enlarged
without volume expansion.

the large sphere side (XL = 1) equals zero, that is to say,

dVcell

dXL

∣∣∣∣
XL=1

= 0. (8)

Applying this boundary condition to Eq. (5) yields C = 1.
In Ref. [2] Eq. (5) with C = 1 was compared with empirical
lattice space data [40], and good agreement was seen.

In Fig. 1, Vcell/�
3
S is set out versus XL for u = 2 and C = 0

(Retger’s equation) and for C = 1. Retger’s equation reflects
that the cell volume is linearly proportional to the volume of
the spheres it is containing, and hence the bimodal packing
fraction equals the monosized packing fraction in the entire
concentration range [see Eq. (7)]. For C = 1, Fig. 1 shows that
the cell volume is larger than the Retger’s equation, reflecting
the expansion of the unit cell, yielding a reduced packing
fraction (compared to the monosized value).

Furthermore, Eq. (7) yields as gradient βcp = − 3/4(1 −
f
cp

1 ) for all crystalline structures [2], for β is defined by
Refs. [32,33]

β = 1

f1(1 − f1)

dη

du

∣∣∣∣
u=1,XL=0.5

= −3C

4(1 − f1)
. (9)

In packing studies often the volume faction c is used (instead
of the number fraction X). Expressed in the volume fraction
of large constituent, cL, using

XL = cLd3
S

cSd
3
L + cLd3

S

= cL

(1 − cL)u3 + cL

, (10)

Eq. (7) reads

ηcp

f
cp

1

= cL(1 − u3) + u3

cL(1 − u3) + u3 + C(1 − cL)cL(u3 − 1)
. (11)
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FIG. 2. Volume [cL = h(u)] and number [XL = k(u)] fraction of
large spheres as a function of the size ratio (u) at minimum/maximum
packing fraction for bimodal particle mixes with small size ratio (u).

The values of cL at which the packing fraction (and void
fraction) for a given size ratio has an extremum is denoted
as cL = h(u) [32]. From the Appendix it follows as

dh

du
= η

cp
cL

η
cp
u

∣∣∣∣
cL= h

= (u3 − 1)[(h − 1)2u3 − h2]

3u2(1 − h)h
. (12)

For u → 1, h(u) tends to 1/2 and for u > 1, h(u) follows from
integrating Eq. (12), the result depicted in Fig. 2. Equation (12)
reveals that the composition at which the packing fraction
has an extremum does not depend on the factor C. Only the
magnitude of the bimodal packing fraction depends on C.

Obviously, this ηcp is also linearly proportional to the mono-
sized packing fraction, as reflected in Eqs. (7) and (11). For
C > 0, the packing fraction is reduced upon mixing and the
extremum is a minimum, for C < 0 the void fraction is reduced
and the extremum constitutes a maximum. The contraction and
expansion of the cell volume is more pronounced the more C

deviates from zero.
Also the number fraction XL at which the packing fraction

attains an extremum, denoted as k(u) [1], can be computed
similarly using the partial derivatives of Eq. (7). It readily
follows (Appendix) that

k(u) + h(u) = 1. (13)

In Fig. 2, k(u) is included as well. Obviously, in view of
Eq. (13), the curves k(u) and h(u) are symmetrical with respect
to the line cL = XL = 0.5.

III. BIMODAL RANDOM SPHERE PACKINGS

In the present section the analysis of the previous section is
extended to random sphere packings. From Eqs. (7) and (11)
it follows that for u↓ 1 the bimodal packing fraction of crys-
talline arrangements can be asymptotically approximated by

ηcp(u, cL) = f
cp

1 − 3f
cp

1 C(1 − XL)XL(u − 1)

= f
cp

1 − 3f
cp

1 C(1 − cL)cL(u − 1). (14)
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Equation (14) illustrates that the packing fraction reduction is
linearly proportional to the monosized packing fraction, the
coefficient C and the size ratio u. It also asserts that for u ↓ 1,
c → X, i.e., volume fraction and number coincide, which
also follows from Eq. (10). The bimodal packing fraction of
randomly packed particles with small size ratio u features the
same characteristics, and reads [1,2]

ηrp(u, cL) = f
rp

1 + 4βrpf
rp

1

(
1 − f

rp

1

)
(1 − cL)cL (u − 1)

= f
rp

1 + 4βrpf
rp

1

(
1 − f

rp

1

)
(1 − XL)XL (u − 1),

(15)

where the superscript rp stands for random packing.
Equations (14) and (15) readily reveal that near u = 1 the pack-
ing extremum is obtained when the two sphere concentrations
are in parity, i.e. XL = cL = 0.5, as can be seen in Fig. 2.

In Refs. [1,2] the bimodal amorphous [Eq. (15) with f
rcp
1 =

0.64 and βrcp = 0.20] and crystalline fcc and bcc packing
fractions [Eq. (7) with C = 1] were equated, yielding the
optimum packing configuration, which depends on mixture
composition and diameter ratio only. Maps of the closest
packing mode were established and applied to colloidal
mixtures of polydisperse spheres and to binary alloys of
bcc, fcc, and hcp metals. The extensive comparison between
the analytical expression and the published numerical and
empirical data yielded good agreement.

It has been conjectured by many researchers that random
packings also have a characteristic structure, since a repro-
ducible packing fraction is found for a defined state of packing,
such as random loose and random close packings (RLP and
RCP, respectively) of spheres. As Eqs. (14) and (15) are
very similar, and following Refs. [34,35] that the underlying
statistics of the bimodal cluster volume is also applicable to
irregular packings, it is intuitively proposed that the packing
fraction of bimodal random packing, Eq. (15), is the asymptotic
approximation for small u of

ηrp

f
rp

1

= cL(1 − u3) + u3

cL(1−u3) + u3 − 4
3βrp

(
1−f

rp

1

)
(1−cL)cL(u3−1)

= XL(u3−1) + 1

XL(u3 − 1) + 1 − 4
3βrp

(
1−f

rp

1

)
(1−XL)XL(u3−1)

,

(16)

with C =− 4
3 βrp(1 − f

rp

1 ) inserted. Equation (16) represents a
simple expression for the bimodal packing fraction, depending
only on the packing mode of the mix (loose, dense, etc.), the
composition, and the size ratio of the two spheres. For random
close packed spheres, Eq. (16), using f

rcp
1 = 0.64 and βrcp =

0.20, is set out in Fig. 3(a).
In this figure also empirical data [4,6] and computer-

generated data [5,7,13,41–44] concerning bimodal packings of
spheres are included. The data from Ref. [41] is generated with
the same model as referred to in Refs. [10,11], [42] data with
the model in Refs. [12], [43] with Refs. [14,17], and Ref. [44]
with Ref. [15]. The referred sources report different monosized
RCP fraction values (f rcp

1 ), viz., 0.634 (experiments [4],
also referred to in Ref. [33]), 0.641 (simulations [5]), 0.625

1.00

1.02

1.04

1.06

1.08 eq. (16 ) [4]
[5] [6]
[7] [13]
[41] [42]
[43] [44]

cL

rcp

rcp
1f

1.00
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1.04

1.06

1.08

0.250 0.5 0.75 1

0.250 0.5 0.75 1

eq. (16 )

RLP [6]

RCP [6]

RLP [48]

cL

rlp

rlp
1f

(a)

(b)

FIG. 3. (Color online) (a) Random close packing fraction of
bimodal spheres (size ratio u = 2), divided by the monosized
packing fraction, as a function of the large sphere volume fraction.
The graph contains Eq. (16) with f

rcp
1 = 0.64 and β rcp = 0.20

[β rcp(1 − f
rcp
1 ) = 0.072], and empirical and computer-generated

data from literature. These sources reported different monosized
packing values (f rcp

1 ), viz., 0.634 (experiments [4], also referred
to in Ref. [33]), 0.641 (simulations [5]), 0.625 (experiments [6]),
0.628 (simulations [7]), 0.6435 (simulations [13]), 0.637 (simulations
[41]), 0.644 (simulations [42]), 0.637 (simulations [43]), and 0.634
(simulations [44]). Their bimodal packing values are therefore all
divided (scaled) by their monosized packing value. (b) Random loose
packing fraction of bimodal spheres (size ratio u = 2), divided by the
monosized packing fraction, as a function of the large sphere volume
fraction. The graph contains Eq. (16) with f

rlp
1 = 0.54 and β rlp =

0.16 [β rlp(1 − f
rlp
1 ) ≈ β rcp(1 − frcp

1 ) = 0.072], empirical data [6],
simulation data [48], all divided (scaled) by their monosized packing
value (0.525 [6] and 0.577 [48]). Also the scaled RCP data from
Ref. [6], taken from (a), are included.

(experiments [6]), 0.628 (simulations [7]), 0.6435 (simulations
[13]), 0.637 (simulations [41]), 0.644 (simulations [42]),
0.637 (simulations [43]), and 0.634 (simulations [44]). Their
bimodal packing values, set out in Fig. 3(a), are therefore all
divided (scaled) by their monosized packing value.

Figure 3(a) confirms that all scaled bimodal RCP fractions
are all matched remarkably well by a relatively simple
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analytical expression [Eq. (16)]. Generally, the analytical ex-
pression underestimates the computational and experimental
values, which might be caused by that the expression is
asymptotically correct when u↓ 1, where as the depicted
packing fractions pertain to u = 2. What is particularly
remarkable is that the present model is solely based on an
analytical analysis, without introducing a fitting parameter.
Both relevant parameters, the monosized packing fraction,
f1, and the monosized/bimodal packing fraction gradient,
β, are namely physically defined and are functions only of
the considered particle shape (here spheres) and the mode
of packing (e.g., loose, close) [32,33]. Furthermore, one can
see that the model also captures for which composition the
maximum bimodal packing is attained when u = 2, viz.,cL ≈
0.66, which can also be seen in Fig. 2. The previous section
demonstrated that the composition at maximum packing
fraction does not depend on the factor β(1 − f1) or C, so
Fig. 2 also holds for the random packing considered here.
According to the listed references and the current model, this
packing increase is for RCP of spheres about 6% compared to
the monosized situation [Fig. 3(a)].

In Fig. 1 the mean volume of a bimodal random close
sphere packing is included by setting out Eq. (5) with C =
− 4

3 βrcp(1 − f
rcp
1 ) [see Eq. (9)] and substituting f

rcp
1 = 0.64

and βrcp = 0.20, yielding C = − 0.096. One can see that
this equation follows Retger’s equation (C = 0) quite close
(as |C| � 1), and that the volume is slightly smaller for 0 <

XL < 1 as C < 0. In other words, for random mixtures the
volume contracts (compared to the mean spheres volume �)
and hence, the packing fraction is higher than the monosized
value.

The presented approach can also be applied to random
loose packing (RLP) of monosized spheres, for which also
a reproducible packing fraction is found [3,6,16,45–49], with
f

rlp
1 ≈ 0.54 as a generally accepted value for this lower limit

of random sphere packings. However, the β of RLP is not
known, and here its magnitude is assessed by applying Eq. (16)
to available bimodal packing information, which is scarce;
only in Refs. [6] and [48] are experimental and computational
data, respectively, presented. Their f

rlp
1 amounts 0.525 [6]

and 0.577 [48], and the scaled bimodal packing fraction is
presented in Fig. 3(b). In this figure also the scaled RCP
fractions as measured by Ref. [6] are included [taken from
Fig. 3(a)].

From Fig. 3(b) one can conclude indeed that the measured
(and scaled) RLP and RCP fractions are quite close to each
other in the entire concentration range, especially for cL =
0.25 and 0.5. This indicates that

βrlp
(
1 − f

rlp
1

) = βrcp
(
1 − f

rcp
1

)
. (17)

Substituting f
rlp
1 = 0.54, f

rcp
1 = 0.64, and βrcp = 0.20 yields

βrlp = 0.16, and Eq. (16) with these f
rlp
1 and βrlp is drawn in

Fig. 3(b). The lines drawn in Figs. 3(a) and 3(b) [Eq. (16)]
are almost identical, and the agreement with the empirical
RLP data from Refs. [6] and [48] is good. It thus appears
that βrp(1 − f

rp

1 )is identical for RLP and RCP of spheres,
which may be coincidental, but the conjecture arises that
βrp(1 − f

rp

1 ) and C are constants (approximately 0.072 and

− 0.096, respectively) for random sphere packings, from loose
to dense. For all crystalline packings it also turned out that C

[and βcp(1 − f
cp

1 ); see Eq. (9)] is identical, namely, C = 1 and
βcp(1 − f

cp

1 ) = −0.75 [1,2]. An identical C [or β(1 − f1)]
implies that the scaled bimodal packing fraction function,
η/f1, is the same.

For crystalline packings this value of C followed from
the insight that the first derivative of the cell volume with
respect to XL at the large sphere side (XL = 1) equals zero, so
when a small sphere is inserted in any sphere in the packing,
the sphere rattles [Eq. (8)]. This holds for all spheres in a
crystalline lattice, which are all hyperstatic. In sc, bcc, and
fcc structures the number of contacts (coordination number)
z amounts to 6, 8, and 12, respectively. In random packings
some spheres are in position where this principle also holds. It
is, for instance, known that in random close packings locally
crystalline arrangements can be found; near the RCP fraction
limit of 0.64, the fraction of tetrahedra is for instance close
to 1/3 [19,20]. Accordingly, to the isostatic (z = 6) and
hyperstatic spheres (z > 6), Eq. (8) applies, the corresponding
mean volume can be found in Fig. 2 (C = 1). But in random
packings also hypostatic spheres (z < 6) contacts are found,
for these spheres the ansatz is made:

dVcell

dXL

∣∣∣∣
XL= 0

= 0. (18)

Applying this boundary condition to Eq. (5) yields that C =
−1 for these spheres; also this resulting volume can be found
in Fig. 2, corresponding to an assembly of solely this type of
spheres. Heuristically, the C pertaining to a random packing
is thought of as the net effect of these two types of spheres
present in a random arrangement. In other words, C ( − 0.096)
of RCP is the statistical expectation of expansion (iso-
static and hyperstatic) and contraction (hypostatic) generating
spheres

C = −4

3
βrp

(
1 − f

rp

1

) = j − (n − j )

n
= 2j

n
− 1, (19)

where j is the number of spheres (in n) that behave as Eq. (8)
and n − j the number of spheres that obey Eq. (18), so j and
n are both integers. In order to obtain Retger’s equation (C =
0), Eq. (19) actually reveals that j/n = 0.5; i.e., the number
of contraction and expansion generating spheres in a cluster
are then equal. For RCP, on the other hand, substituting C =
− 0.096 (as βrcp ≈ 0.20 and f

rcp
1 ≈ 0.64) yields j/n ≈ 0.452.

It is noteworthy that this value of 0.452, based on βrcp and f
rcp
1 ,

is quite insensitive to the values that are taken for them. The
value f

rcp
1 ≈ 0.64 is generally accepted, but the value of βrcp

is less precisely known. Increasing and reducing its value with
10% and making use of Eq. (19) results in j/n values 0.447
and 0.457, respectively, so to a change of about 1% only. This
implies that the assessment j/n ≈ 0.452 is fairly robust.

Hence, from the current analysis it follows that the number
of spheres that behave as Eq. (18) is slightly larger than the
number of spheres that follow Eq. (8), i.e., j < n/2, which
is needed to obtain a negative value of C, and hence the
commonly observed volume contraction of bimodal random
particle packings (yielding packing fraction increase). In
computer-generated RCP of spheres, where the number of
contacts is determined, it is also found that the total number
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of isostatic and hyperstatic spheres is approximately equal to
the number of hypostatic spheres [10,11,14,16,17]. However,
in these computer-generated packings mostly the number of
hyperstatic spheres is slightly dominating, with which the
present outcome seems not compatible, as here the hypostatic
spheres seem to slightly dominate. It should also be mentioned
that a majority of hypostatic spheres does not imply that the
mean contact number (“coordination number”) z̄ is smaller
than 6 as well, as part of the hyperstatic spheres may have
10 contacts or more [14,17], while by definition hypostatic
spheres can at most have 5 contacts.

Furthermore, when βrp(1 − f
rp

1 ) would be a constant for
random packed spheres, as discussed above, it also follows that
the percentage of hypostatic spheres in elementary clusters
is the same as for RCP, namely, 55%, as j/n is then the
same for all random packings [Eq. (19)]. In Ref. [49] it was
derived that the mean geometrical coordination number z̄,
which includes the contacts with zero force, is approximately
identical for all random packings. As these contacts are active
when the monosized packing becomes bimodal, that is to
say, when spheres start to differ in size, the present result
indeed seems to be compatible with the aforesaid finding
in Ref. [49].

In Ref. [46] a linear correlation has proposed between
the mean contact number and packing fraction. In Ref. [49]
the following linear relation between the mean number of
mechanical contacts Z̄, the number of contacts exerting force
and contributing to the mechanical balance (hence Z̄ � z̄), and
random packing fraction was derived:

f
rp

1 = Z̄

Z̄ + 2
√

3
, (20)

with Z̄ ranging from 4 (RLP) and 6 (RCP). Combining
Eqs. (17) and (20) yields the following relation between β

and Z̄ for random sphere packings:

βrp = βrcp
(
1 − f

rcp
1

) (
1 + Z̄

2
√

3

)
= 0.072

(
1 + Z̄

2
√

3

)
.

(21)

From this equation it follows that there is linear relation
between the mean number of mechanical contacts and the
contraction coefficient βrp.

For more than 60 years it has been conjectured that
supercooled monatomic liquids, which resemble of random
hard sphere packings, feature a universal structure [22–31].
Recent experimental observations of liquid lead [28] and of
colloidal suspensions [30] confirm the presence of clusters,
allowing a “structural” description of liquids’. Also molecular
dynamics simulations reveal a nearly universal structure,
comprising both icosahedral and polytetrahedral order in
liquid copper [31]. The generated information about the
magnitude of volume contraction and fraction of hypostatic
spheres may serve in the search for the minimum number
of spheres n that form a characteristic cluster of randomly
packed spheres. For sc, bcc, and fcc structures n amounts to
8, 4, and 4, respectively [2]. The smallest integer combination
that approximates the abovementioned j/n ratio (≈ 0.452)
for random packings is 9/20. Accordingly, one could say that
the current analysis reveals that 20 is a characteristic value

for the minimum number of spheres n that would define a
universal cluster of randomly packed monosized spheres. It is
noteworthy that numerically generated RCP revealed typical
complex polytetrahedral clusters, consisting of approximately
20 spheres as well [19–21], with which the present result is
thus compatible. In Refs. [27,28] a typical polytope consisting
of 120 atoms is mentioned.

IV. CONCLUDING REMARKS

The present paper reveals that the packing fraction of
bimodal random arrangements of hard spheres with small
diameter ratio (u) can be described with a similar model as
for crystalline arrangements, presented in Refs. [1,2]. This
packing fraction, Eq. (16), is characterized by a closed-form
equation containing the concentration of the two components
(actually by one of them, here the large one) and the sphere
diameter ratio, and depends on two packing parameters, β and
f1. The new expression for the random packing of bimodal
spheres, with small size ratio is compared extensively with
RCP information from literature, empirically and computer
generated, and good agreement is found. It is noteworthy that
model and used parameters are based on physical principles,
and no adjustable parameter has been introduced anywhere
to achieve the presented results. For RCP both β and f1 are
all well-defined parameters with prescribed, so nonadjustable,
values.

The concentration at which the packing fraction has an
extremum is computed as a function of u. It appears that for the
concerned number and volume concentrations, XL = k(u) and
cL = h(u), respectively, hold that k(u) + h(u) = 1 and k(u =
1) = 0.5 (the content of large and small spheres being in parity).
This expression is generic; i.e., it holds both for crystalline and
random packings: In the former case the packing extremum
constitutes a minimum, in the latter case it is a maximum
packing fraction (for a given size ratio u).

The present approach also yields the characteristic volume
of randomly packed bimodal spheres. This is governed by
Eq. (5), applicable for n going to infinity, but also for a
finite number of spheres n if random packings would have
a repeatable structure (elementary cluster). The information
on the RCP fraction increase by combining two sphere sizes,
resulting in a mean volume change, provides information on
the fraction of hypostatic spheres (and that of the other spheres:
isostatic plus hyperstatic) in the random packing, which is
about 55% (45%). This value is insensitive to the underlying
values taken here for βrcp and f

rcp
1 , and also appears to be

applicable to other random packing states such as RLP as it is
conjectured that βrp(1 − f

rp

1 ) is constant (≈ 0.072, and hence
C ≈ − 0.092).

In the past it has been conjectured that glasses, supercooled
monatomic liquids and colloidal suspensions, which resemble
random hard sphere packings, are structurally organized. The
current study yields insight into the minimum number of
spheres involved in an elementary cluster, viz., 20 spheres, and
it is tentatively concluded that this figure holds for all random
packing states of identical spheres, which is compatible with
the conclusion of Ref. [49] that all random sphere packing
states possess approximately the same mean geometrical
coordination number.
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APPENDIX

The first derivatives of Eq. (11) with respect to cL and u

read

ηcL
= dη

dcL

= C(u3 − 1)
[
(cL − 1)2u3 − c2

L

]
f 1

[cL(1 − u3) + u3+C(1 − cL)cL(u3 − 1)]2

(A1)

and

ηu = dη

du
= 3Cu2(1 − cL)cLf 1

[cL(1 − u3) + u3 + C(1 − cL)cL(u3 − 1)]2
,

(A2)

respectively. The partial derivatives of Eq. (7) read

ηXL
= dη

dXL

= C(u3 − 1)
[
X

2
L
u3 − (1 − XL)2

]
f 1

[XL(u3 − 1) + 1 + CXL(1 − XL)(u3 − 1)]2

(A3)

and

ηu = dη

du
= −3Cu2

XL(1 − XL)f 1

[XL(u3 − 1) + 1) + CXL(1 − XL)(u3 − 1)]2
.

(A4)

The number faction at which the bimodal packing has its
extremum, XL = k(u), follows from

dk

du
= ηXL

ηu

∣∣∣∣
XL= k

= (u3 − 1)[(k2u3 − (1 − k)2]

−3u2(1 − k)k
. (A5)

Equation (A5) transforms into Eq. (12) when k is replaced by
1 − h, implying that h(u) + k(u) = 1. In Ref. [1], k(u) was
erroneously determined by solving ηXL

= 0 [using Eq. (A3)],
yielding

k(u) = 1

u
3
2 + 1

. (A6)
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[47] M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden,
M. Saadatfar, and T. Aste, Phys. Rev. Lett. 101, 018301 (2008).

[48] Y. Shi and Y. Zhang, Appl. Phys. A 92, 621 (2008).
[49] C. Song, P. Wang, and H. A. Makse, Nature (London) 453, 629

(2008).

032202-8

http://dx.doi.org/10.1103/PhysRevLett.64.2727
http://dx.doi.org/10.1088/1742-5468/2006/07/P07010
http://dx.doi.org/10.1088/1742-5468/2006/07/P07010
http://dx.doi.org/10.1103/PhysRevLett.101.018301
http://dx.doi.org/10.1007/s00339-008-4547-6
http://dx.doi.org/10.1038/nature06981
http://dx.doi.org/10.1038/nature06981



