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The random packing of regularly and irregularly shaped particles has been studied extensively. Within this
paper, packing is studied from the perspective of digitized particles. These digitized particles are developed
for and used in cellular automata systems, which are employed for the simple mathematical idealizations
of complex systems in physics, chemistry and engineering [S. Wolfram, Rev. Mod. Phys. 55, 601-644
(1983)]. In the present paper, the random packing of digitized particles is studied using the packing routines
available in the cellular automata cement hydration model by D.P. Bentz [A Three-dimensional Cement Hydration
and Microstructure Program. I. Hydration Rate, Heat of Hydration, and Chemical Shrinkage (National Institute of
Standards and Technology, 1995)] and a modified version of the Lubachevsky and Stillinger algorithm [B. D.
Lubachevsky and F. H. Stillinger, Journal of Statistical Physics 60, 561-583 (1990)]. It is shown that the packing
of digitized particles is comparable to spheres, when taking into account the specific properties of digitized
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1. Introduction

Packing of disks and spheres, both uniform and graded sizes, was
described in great detail in literature [1-4]. Besides these ideal disks
and spheres also spheroids and irregular particles are studied [5-8].
In this paper, the packing of digitized particles is studied. The
digitized particles are developed for and used in cellular automata
systems, which are employed for the simple mathematical idealiza-
tions of complex systems in physics, chemistry and engineering [9].
‘Cellular automata consist of lattice of discrete identical sites, each site
taking on a finite set of integer values. The values of the sites evolve in
discrete time steps according to deterministic rules that specify the
value of each site in terms of the values of neighbouring sites’ [10].
According to Kier [11], cellular automata are not restricted to only
the use of deterministic rules, since probabilistic rules are used exten-
sively for studying real physical and chemical systems nowadays. The
digitized particles are representing spherical particles in ‘cubic’ cellu-
lar automata system and are composed of voxels (cubic pixels)
(Fig. 1). The properties of the digitized particles are presented in
Table 1. During the packing experiments these particles are placed
in a confined geometry, here a cubic box with rib size Lyox. Both the
size of particle (d) and box (L,ox) are expressed in the basic voxel size.

Jia and coworkers [6,12,13] have also performed simulation using
digitized particles. Their research mainly focused on packing of particles
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of arbitrary shapes mostly in 2D, while the current research focus on
regularly shaped particles in three dimensions. Furthermore in the cur-
rent research, the influence of shape on the state of random close pack-
ing (RCP) is studied thoroughly.

2. Methods

Bentz [14] investigated the hydration of cement using a cellular
automata model and therefore generated an initial microstructure
by placing digitized particles in the confined system (3D) box at
random locations from largest to smallest particle size, employing
periodic boundaries [15]. This model has been developed for the cre-
ation of the initial microstructure using graded particles rather than
monosized particles. Using this module for uniform particle sizes,
the authors obtained a packing fraction up to 0.379 for d=13 and
Lpox=100. This is close to RSA (random sequential addition) of
0.385 as found by Williams and Philipse [16]. However, this value is
far below the commonly accepted random close packing (RCP)
value of 0.634 [17].

Since Bentz' model was developed to create a starting microstruc-
ture for cement hydration, and not aimed to acquire close packings of
monosized particles, a ‘new’ packing routine has been developed. The
used routine is comparable to the sequential methods as described by
Lubachevsky and Stillinger [2], who obtained a packing fraction of
0.634 for monosized spheres.

Within the applied routine, particles are placed randomly in a box,
after placing a new particle all other particles are moved. The move-
ment of the particles and speed of addition of particles is described
by two parameters. The first parameter governs the number of
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Fig. 1. Digitized particles with a sizes of 3, 5, 7, 11 and 21 voxels (the top-surfaces in gray, which are used for the computation of the digitized roundness) (the voxel that are re-
moved from the 7 and 11 and 21 particles during shape modification are indicated in black in print and blue online).

moves (over a distance of 1 voxel in x, y or z direction) that each par-
ticle attempts to make during a movement cycle (ny,). The second pa-
rameter is the number of movement cycles (n). Furthermore
different boundary conditions can be applied, which each has a cer-
tain limitation on moves over the boundaries of the box. These
boundary conditions range from periodic boundary conditions on all
sides to the limitation of particle movement across the boundaries
of the box (here the faces of the cube). During the present research,
a combination of boundaries types was applied. The movement
through the top and bottom surface of the box was limited, whilst ap-
plying periodic boundaries on the other sides. The movement in this
direction was limited, but however not impossible. Actually, all
boundaries are periodic, but only the movement in this one direction
has been restricted in order to have convergence during application
of (modified) Lubachevsky and Stillinger routine. This proved to re-
sult in the best packing results, which were slightly higher for lower
size ratios | (box size divided by the particle diameter, i.e. Lyox/d)
compared to a system with limitations on all sides. In other words,
true periodic boundaries have been applied. Furthermore, prelimi-
nary studies of the packing systems showed that the n, had no obvi-
ous influence on the packing fraction, and this packing fraction is

Table 1

Properties of digitized particles (with * as the modified particles), the particle volume
is expressed in single voxel volumes and the surface in the surface area of one voxel
face, and F=d - A,/V,,.

Digitized particle Sphericity ~ Roundness
i\ €
Eq. (1) Eq. (2)

Sized  VolumeV, Surface A,  Shape factor F

1 1 6 6.00 0.716 0.00
3 19 54 8.53 0.760 0.44
5 81 126 7.78 0.819 0.57
7 179 222 8.68 0.807 0.76
9 389 414 9.58 0.876 0.81
11 739 582 8.66 0.901 0.78
13 1189 822 8.99 0.905 0.85
15 1791 1062 8.89 0.909 0.88
17 2553 1350 8.99 0.921 0.89
19 3695 1758 9.04 0.928 0.90
21 4945 2094 8.89 0.931 0.89
23 6403 2526 9.07 0.938 091
25 8217 2934 8.93 0.942 0.92
27 10,395 3462 8.99 0.946 0.92
29 12,893 3990 8.97 0.949 0.93
31 15,515 4494 8.98 0.951 0.94
33 18,853 5166 9.04 0.952 0.94
35 22,575 5838 9.05 0.956 0.94
37 26,745 6510 9.01 0.958 0.94
39 31,103 7206 9.04 0.963 0.95
7* 171 222 9.09 0.841 0.76
11* 691 582 9.26 0.881 0.87
21* 4801 2094 9.16 0.930 0.92

influenced by the ny, up to value of 20. By a further increase of ny,,
the packing fraction levels out, while the computational time keeps
increasing. Jia and Williams [6] showed a similar effect on packing
fraction by the speed of addition of particles in their models.

3. Results

Fig. 2 shows the results of these simulations, particles with d=7,
9, ... 37 and 39 were used, and boxes with L,,x =50, 60, 75, 85,
100, 200, 300, 400 and 500. One can notice that there is a clear rela-
tion between size ratio | (Lyox/d) and the packing fraction f(1), and a
similar trend can be observed as by Desmond and Weeks [18]. One
can see that f(1) tends to a limiting value for the higher size ratios I,
higher than the RCP value for spheres (0.64), particularly for d =7,
d=11 and d=21 particles. This can be partly explained by the
particle shape, which will be done later in this paper. Jia and Williams
[6] found a similar result during their research when packing identi-
cal circles in their 2D-system DigiPac. They found a value of 0.875,
which is in between the value for random (0.82) and crystals
(0.91), which according to these authors indicates that the generated
structure contains crystal domains. During prelimary tests in 2D
during our research we have found a comparable value of 0.877 for
Lpox =350 and d=11. Caulkin et al. [19] investigated packing of
mono-size spheres, binary and ternary mixed beds both experimental
and using DigiPac using cylindrical containers and found a maximum
packing fraction of 0.599 for mono-sized spheres. The main difference
with this research is the absence of periodic boundaries and the shape
of the container.

Furthermore from Fig. 2, one can observe a raise in the packing
fractions close to =1, which is caused by the finite size effect as

f ()

All d except 7, 11 and 21
RCP of spheres

d=7

d=11

d=21

lower boundary (I = 1)
scc

30 40

Fig. 2. The relation between size ratio | (Lyox/d) and random packing fraction (n,= 10,
Ny =20).
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described in Desmond and Weeks [18] and also observed experimen-
tally by McGeary [20].

The data presented in Fig. 2 is obtained using cubic boxes with equal
dimensions in the three directions. Fig. 3 shows the effect of changing
the height of the box for different dimensions of a square bottom and
d =13. Fig. 3 shows the data scaled to the maximum packing fraction
obtained for a particular bottom size ratio | (Lyox/d). As one can notice
that the height of the box (Hpox) has an influence on the packing densi-
ty. Furthermore a raise in the packing fraction can be observed close to
h =1 comparable to the effect at =1 and which can be explained by
the work of Desmond and Weeks [18] as well as McGeary [20].

Besides the packing fraction also other parameters are available to
characterize random particle assemblies, such as the contact number
and translational order metric. Fig. 4 shows the average contact num-
ber for several of the performed 3D-simulations. The contact number
is linearly related with the packing fraction (Fig. 4). This linear trend
is almost identical to the linear trend found by Aste [21], who used a
cylindrical container for his simulations, while in this paper a cubic
container is used. For some simulations with high packing fraction,
the contact number is higher than the caging number, which could in-
dicate some ordering in the system. Furthermore one can notice con-
tact numbers higher than 12, which is higher than one should expect
from theory. These extreme values are all caused by particles with
d=7, most probably due to their particle shape.

As already noticed in Fig. 2, all particle sizes tend to a random
packing fraction larger than 0.64, the RCP value of spheres. The effect
was most pronounced for d=11 and d =21. One possible explana-
tion is the angularity of the digitized particle. There are several
ways to describe the effect of particle shape on packing [22]. Barrett
[23] distinguished three parameters to describe the shape of a particle
based on literature review of numerical methods to describe these
parameters namely; shape, roundness and surface texture. Davies
[22] gave an overview of some of the methods to describe the particle
shapes. Most of these methods are developed for 2D-projections and
to distinguish regular and irregular natural particles (i.e. sands, grav-
el), and therefore less suitable to describe digitized particles, which
are regularly shaped and have equal dimensions in three perpendicu-
lar directions, like spheres. For this paper two methods are applied to
account for the shape of digitized particles, namely sphericity and
digitized roundness. The sphericity is defined by Wadell [24] as;
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Fig. 3. The relation between the box height ratio (h) and the scaled random packing
fraction for different dimensions of the box bottom ratio (I) (n,=10, n,, =20, d=13).

1.0
0.9 y =0.039x + 0.365
0.8 ] R2=0.948 xx X
0.7 \’.A'*W
0.6

= 051 y = 0.034x + 0.345

R2=0.896

039
¢ Alldexcept7,11 and 21 X d=7
0.2 A d=11 B d=21
0.1+ ® Spheres (Aste, 2005) Digitized particles
0.0 : Spheres ‘(Aste, 200?) ‘ ‘ ‘
0 2 4 6 8 10 12 14

<Cc>

Fig. 4. The relation between contact number (<c>) of the random packing and packing
fraction f (n,=10 and n,, = 20).

whereby V,, and V. are the particle volume and the volume of
circumscribing sphere, respectively. Based on the 2D definition of
roundness by Lees [25], the following 3D definition for digitized
roundness is proposed here

@)

with A, as the total surface of the digitized particle and A, the surface
area of one of the top surfaces of digitized particle. The top-surfaces
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Fig. 5. a) The relation between size ratio | (Lpox/d) and the product of packing fraction
and digitized roundness f.(1) and b) the relation between size ratio 1 and the product of
the packing fraction and the Wadell sphericity f,,(1) (based on the data from Fig. 3 and
Table 1).
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are defined as the surfaces of the digitized particle, lying perpendicu-
lar to the three main directions at either x=r,y=ror z=r, with X, y,
z the distance of axis to the middle of the particle and r the radius of
the particle. Fig. 1 shows the top-surfaces of a d =7 particle in grey as
an example. Both the sphericity and digitized roundness are unity for
a perfect sphere and digitized roundness is zero for a cube. Further-
more the particle shape can be described using the shape factor
which is described by Chen [26] as

F=—7 3)

With d the particle size, A, the surface area of the particle and V,,
the volume of the particle. Table 1 shows the shape factor F, Wadell's
sphericity ¢ and digitized roundness of the digitized particles used
in this research. From this table, one can notice that the shape factor
F for d=7 and d=11 is much lower than for the other particles,
which partially explains the differences visible in Fig. 2.

In order to derive a correction factor, the digitized roundness and
Wadell sphericity are combined with the computed packing results.
Fig. 5a and b show the result of multiplying the packing fractions
with the digitized roundness and Wadell sphericity, respectively. Fur-
thermore, both modifications result in a packing fraction for all digi-
tized particles that are below the random close packing value of
spheres, and tend to the RCP limit for large size ratio h. One can also
notice that the results for d=7, d=11 and d =21 become more in
line with the results of the other sizes, but are still higher than
those of the other particles. Although the shape corrections bring
the packing results in line with the RCP-value of spheres, the packing
of particles with d =7, d=11 and d = 21 are still behaving differently
from the other sizes.
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0 10 20 30 40
|

Fig. 6. The relation between size ratio | and a) the product of packing fraction and dig-
itized roundness f (h) b) the product of packing fraction and Wadell sphericity using
the modified d=7, d=11 and d =21 particles f,(1) (n(=10 and n,,,=20).

A possible solution to bring d=7, d=11 and d =21 in line with
the other sizes is to modify the composition of d=7, d=11 and
d=21 particles. The particles are namely shaped using a routine
that determines if a voxel within the box is part of the digitized par-
ticle [14]. A voxel is part of digitized particle in case the distance
from the centre of the voxel to the centre of the digitized particle is
smaller than half the size of the digitized particle. With the reduction
of the diameter by 0.05, the particle shape already alters. The volume
of the modified particles decreases compared to the original, while
the total particle surface remains equal. In Fig. 1 the removed voxels
are colored black/blue. The volume decrease in case of d=11 is 48
voxels, which means the removal of 8 voxels in each 6 (top)sides.
For d =21 besides 8 voxels in each 6 (top)sides, another 96 voxels
were removed from the outer layer. For 11 and 21 particles the digi-
tized roundness changes from 0.78 and 0.87 to 0.89 and 0.92, respec-
tively (Table 1), while it remains at 0.76 for d =7. While the Wadell
sphericity changes from 0.81, 0.90 and 0.93 to 0.84, 0.88 and 0.93,
ford=7,d=11and d =21, respectively (Table 1). The digital round-
ness of the modified particles are now more in line with those of the
other particle sizes. Fig. 6a shows the simulation results for the prod-
uct of the packing fraction and digitized roundness using the modi-
fied particles of d=7, d=11 and d=21, together with the other
unmodified particles. When comparing Fig. 6a with Fig. 5a one can
notice that the results of the digitized (modified) particles are now
closer to the other particle sizes, and only very slightly higher than
the other sizes.

To assess the randomness of the generated assemblies, the trans-
lational order metric order (T) is computed [20]. Fig. 7 shows the
translational order results for 1> 5. The results for 1 <5 are less reliable
since the number of particle relations is too limited for a sound statis-
tical analysis, and furthermore finite size and wall effects play an
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Fig. 7. The translational order metric (T) of the simulations concerning Lyox/d>5, ver-
sus a) the product of packing fraction and digitized roundness b) the product of pack-
ing fraction and Wadell sphericity.
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e Hypy =100 =5

Fig. 8. Example of the structure of packed bed created using the packing routine for box
dimensions 50x 50 x 100.

important role [18,20,27,28]. Two outliers can be observed in Fig. 7,
these are outliers caused by particle of d=21 in a box with Lyox =
300 and Lyox = 350.

From Fig. 7, one can notice a negative correlation between packing
fraction and translational order metric, which is opposite to the rela-
tion shown by Kansal et al. [29] and Torquato [3,30]. Kansal et al. [29]
created the lower packing fractions by removing spheres from an face
centred cubic lattice leaving the other spheres on existing position,
and hence the structure will not change. While in the present re-
search the lower packing fractions are caused by the properties of
digitized particles. On the other hand, Torquato [3,30] determined
the translational order metric for random packing of spheres also
using the Lubachevsky and Stillinger algorithm, and a positive corre-
lation between packing fraction and translational order metric was
obtained.

The derived translational order metric from the simulations is in
the same range as found by Kansal et al. [29] and Torquato [3,30],
which could indicate that the generated (particle) arrangements are
random indeed. Especially since Torquato [3,30] showed that the
translational order metric of crystalline systems is higher than 0.4
and in the present paper the translational order metric is lower for
high values of | (Fig. 7).

Fig. 8 shows an example of a packed structure created using the ap-
plied packing routine with bottom dimensions of 50x 50 (Lpox X Lyox)
and a height of 100 (Hpox).

4. Conclusions

Digitized particles are an elementary part of cellular automata
models, and the close random packing (RCP) of monosized particles
is addressed here. The original packing model of Bentz [14] is not suit-
able for research of (random close) packing of mono-sized digitized
particles, since the found packing fractions are close to the random
sequential addition value of spheres. A used model, similar to the

Lubachevsky and Stillinger [2] algorithm, has been introduced in
this paper. The found packing fractions during simulations are clearly
related to the size ratio (Lyox/d) for all particle sizes except for d=7
(voxels),d=11 and d =21, which results in higher packing fractions.

The digital roundness was introduced in order to describe the
particle shape of the digitized particles. This was not possible by
applying the existing methods, since these methods are mostly
based on 2D-projection and irregular shaped particles, while the dig-
itized particles are regular shaped and equal dimensions in three
main-directions. Using the digitized roundness and Wadell's sphe-
ricity, the packing results obtained during simulation could be
explained. The product of Wadell sphericity and packing fraction ap-
proaches the random close packing fraction of spheres (~0.63) for
the higher size ratios I (Lpox/d).

New particle shapes for d=7, d=11 and d =21 have been intro-
duced in order to overcome the aforementioned outliers noticed dur-
ing packing simulations. The modified particle shapes have a digitized
roundness which fits better in the curve together with the other par-
ticle sizes and the packing fraction is reduced compared to the pack-
ing fraction of the original particle shape used by Bentz [14].
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