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Packing fraction of geometric random packings of discretely sized particles
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The packing fraction of geometric random packings of discretely sized particles is addressed in the present
paper. In an earlier paper [Brouwers, Phys. Rev. E 74, 031309 (2006);74, 069901(E) (2006)], analytical solutions
were presented for the packing fraction of polydisperse geometric packings for discretely sized particles with
infinitely large size ratio and the packing of continuously sized particles. Here the packing of discretely sized
particles with finite size ratio u is analyzed and compared with empirical data concerning five ternary geometric
random close packings of spheres with a size ratio of 2, yielding good agreement.
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In Ref. [1] analytical solutions were presented for the
packing fraction of polydisperse geometric packings. Two
cases were distinguished, packings of discretely sized par-
ticles with infinitely large size ratio u and the packing of
continuously sized particles. It was shown that the latter dis-
tribution follows from a discretely sized packing by taking the
limit u→1.

The first case, u→∞, concerns noninteracting size groups,
and the void fraction of the assembly can be derived from
the packing fraction of the monosized packing of the particle
shape considered (ϕ1) [2]. For a bimodal packing fraction, the
minimum void fraction thus becomes ϕ2

1 , in Ref. [3] designated
as a saturated packing. In Fig. 1 this principle is illustrated
by the void fraction of packed bimodal broken particles with
ϕ1 = 0.5, taken from [3]. The figure reveals that the bimodal
void fraction h is governed by the size ratio u and the
composition of the mix. The composition can be expressed
in the volume fraction of the large component (cL) or the
volume ratio of large and small components [r = cL/cS =
cL/(1–cL)], so h(u, r). For infinitely large size ratio, one can
see that the minimum bimodal packing fraction tends to 0.25,
corresponding to ϕ2

1 . The composition then corresponds to cL

= 2/3 (r = 2), corresponding to 1/(1 + ϕ1) [1].
Extending this situation of two noninteracting particle

factions to n fractions yields ϕn
1 as the saturated void

fraction. For such saturated packing, i.e., a packing where the
concentrations are such that a size class can fill the voids of the
next larger size class, both the size ratio and the concentration
ratio of subsequent particle classes is constant [1]. From the
aforesaid void fraction expression one can see that the void
fraction is reduced proportionally to the number of size groups
minus 1, and is homogeneous on some long length scale. The
bimodal void fraction, described by the function h(u, r), is
also defined in the vicinity of u = 1. Considering that bimodal
void fraction packing h(u, r) can range between ϕ1 and ϕ2

1 ,
in Ref. [1] it was derived that the monosized void fraction
ϕ1 is reduced with a factor h/ϕ1 when a second smaller fraction
is added. When the size ratio u between the adjacent sizes
in a multicomponent packing is finite, the perfect packing
of smaller particles in the voids of the larger ones does not
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hold anymore, but also in this case the void fraction reduction
involved with the size ratio of adjacent size groups (of constant
ratio) is proportional to the number of size groups. Accordingly
in Ref. [1], for a system with n size groups, was proposed

ϕ = ϕ1

[
h(u,r)

ϕ1

]n−1

. (1)

A maximum packing fraction is obtained when h is
minimal. For a saturated packing of n sizes, Eq. (1) readily
yields ϕn

1 indeed. The effect of adding an infinite number
of size groups, to obtain a continuous packing, on the void
fraction was also examined in Ref. [1]. Adding more size
groups to the mix will reduce the void fraction. But on the
other hand, its effect is less as the size ratio of adjacent groups
tends to unity (i.e., u → 1) and the resulting void fraction
of adjacent size groups, governed by h(u, r), tends to ϕ1.
This limit was solved and the void fraction of a geometric
continuous packing obtained. This expression was extensively
validated by comparing it with a broad set of empirical data
of [4], concerning continuous geometric packings of broken
particles.

That Eq. (1) also holds for a finite number of interacting
particles with finite size ratio is verified here. This is done
by considering empirical ternary sphere packing results of
Jeschar et al. [5], who did not specify how their packings
were prepared and measured. They obtained ϕ1 = 0.366 for
the monosized packing of spheres with diameters 7 mm (d3),
14 mm (d2), and 28 mm (d1). These values are compatible with
random close packing (RCP) values from other experiments [6]
and with computer generated values [7]. Equation (1) is,
however, applicable to any mode of packing, from random
loose to random close packed. To apply the current multimodal
packing model, unimodal, bimodal, and trimodal packings
only need to be prepared and compacted in a comparable
way [1].

The bimodal and trimodal packing results from [5] are
summarized in a ternary plot (Fig. 2). The sides of the triangle
show that the binary packings of 7 and 14 mm have the same
void fraction as the mixes of 14 and 28 mm packing at equal
compositions, which would be expected as the size ratios of
these binary mixtures are equal (d1/d2 = d2/d3 = u = 2).
These measured binary void fractions h are included in Table I
for various compositions (cL or r).
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FIG. 1. Void fraction of bimodal mixes (h) of broken particles
as a function of size ratio dL/dS (u) and volume fraction of large
constituent (cL) according to Furnas [3]. The ratio r [=cL/cS =
cL/(1–cL)] is shown as well.

The compatible unimodal void fractions as measured with
the three spheres sizes, as well as the compatible bimodal
void fractions measured with d1/d2 and d2/d3 mixes, indicate
that Jeschar et al. [5] conducted all their experiments in a
reproducible and robust manner.

Using the void fraction of geometric ternary packings
(n = 3) that can be extracted from Fig. 2, it can now be verified
if Eq. (1) is applicable. In Table I the compositions of five
geometric packings are included, for which c1/c2 = c2/c3 =
r , r being 1/3, 1/2, 1, 2, and 3. The concentrations ci follow
from the cumulative finer fraction [1]:

F (di) = dα
i − dα

4

dα
1 − dα

4

, (2)

with i = 1, 2, 3, and 4, d4 = 3.5 mm, and α from

α = u log r, (3)

in which u is the base of the logarithm. The concentration
ci of each size group follows from F (di)–F (di+1), and are
included in Table I. Equation (2) holds for α �= 0; for α = 0
the cumulative finer function reads as follows:

F (d) =
ulog di − ulog d4
ulog d1 −u log d4

. (4)

FIG. 2. Ternary void fractions of RCP of sphere mixes as a
function of their composition according to Jeschar et al. [5].

Note that the packing consists of spheres with diameters 28,
14, and 7 mm, but that a size class of 3.5 mm is added (needed)
in order to formulate the appropriate cumulative finer functions
governed by Eqs. (2) and (4).

The ternary void fraction j (u, r) of each packing as
measured by [5] is taken from Fig. 2, and is included in Table I
as well. Finally, the ternary void fraction is computed using
Eq. (1), whereby the corresponding binary void fraction h(u, r)
is taken from Fig. 2 and Table I as well. Comparing the values
predicted by Eq. (1) and the measured values (see Table I)
reveals that the ternary packing fraction can be predicted
accurately from the binary void fraction h(u, r). So, in Ref. [1]
it was seen that Eq. (1) holds for saturated discrete packings
(u → ∞) and continuous packings (u → 1); now it appears
also to hold for geometric packings of discretely sized particles
with finite size ratio (here: spheres with u = 2).

The author wishes to thank Dr. Dipl.-Ing. G. Hüsken for his
assistance with the drawing of the figures.

TABLE I. Binary (h) and ternary (j ) void fractions as measured by Jeschar et al. [5] using discretely sized spheres (d1 = 28 mm, d2 =
14 mm and d3 = 7 mm, i.e., u = 2). Also the computed void fraction of a ternary geometric packing, using Eq. (1) with n = 3 and ϕ1 = 0.366,
for various r (being ci/ci+1, or cL/cS in case of the binary mixture) is included.

cL cS r h(u, r) measureda α c1 c2 c3 j (u, r) measureda j (u, r) Eq. (1)

1/4 3/4 1/3 0.348 –1.58 0.08 0.23 0.69 0.334 0.333
1/3 2/3 1/2 0.344 –1 0.14 0.29 0.57 0.323 0.323
1/2 1/2 1 0.335 0 1/3 1/3 1/3 0.313 0.307
2/3 1/3 2 0.335 1 0.57 0.29 0.14 0.308 0.307
3/4 1/4 3 0.338 1.58 0.69 0.23 0.08 0.313 0.312

aReference [5].
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