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This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles.
So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein �A. Einstein, Ann. Phys.
19, 289 �1906� �in German�; Ann. Phys. 34, 591 �1911� �in German�� for spheres. For larger concentrations,
a number of phenomenological models for the relative viscosity was presented, which depend on particle
concentration only. Here, an original and exact closed form expression is derived based on geometrical con-
siderations that predicts the viscosity of a concentrated suspension of monosized particles. This master curve
for the suspension viscosity is governed by the relative viscosity-concentration gradient in the dilute limit �for
spheres the Einstein limit� and by random close packing of the unimodal particles in the concentrated limit.
The analytical expression of the relative viscosity is thoroughly compared with experiments and simulations
reported in the literature, concerning both dilute and concentrated suspensions of spheres, and good agreement
is found.
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I. INTRODUCTION

The rheological behavior of concentrated suspension is of
great importance in a wide variety of products and applica-
tions, in biology, food, and engineering. There is, therefore,
practical as well as fundamental interest in understanding the
relationship between the concentration, particle shape, and
particle-size distribution on the one hand, and relative vis-
cosity of the suspension �or slurry� on the other.

Here, neutrally buoyant chemically stable �no agglomera-
tion� hard particles in a Newtonian fluid are considered. Fur-
thermore, the viscosity of concentrated slurries is highly sen-
sitive to how this property is measured. Here the effective
shear of hard-sphere suspensions at low shear rate and high
frequency is addressed, that is to say, the low Reynolds num-
ber limit �Stoke’s regime�. For dilute suspensions, the
viscosity-concentration function can be linearized �e.g., the
classical hard-sphere result of Einstein �1��. This linearized
equation is based on no appreciable interaction between the
particles and the coefficient of which depends on particle
shape only �and not on size distribution�. As loading is in-
creased, this universality is lost, and the viscosity diverges
when the associated state of random close packing �RCP� is
approached, depending on particle shape and particle size
distribution only. One of the most challenging rheological
problems has been the development of theoretical and em-
pirical equations for the viscosity of concentrated suspen-
sions. The derivation of a master curve for monosized par-
ticle suspensions, in particular the suspensions of spheres,
has been the principal goal of many theoretical and experi-
mental studies, and numerous universal equations have been
developed in efforts to extend the linear approximations to
concentrated suspensions. Such monosized systems are also
considered as useful for modeling more complicated polydis-
perse systems. Here, bimodal particle hard-sphere packing
theories are used to derive an analytical expression for the
viscosity-concentration function of monosized particles, i.e.,
the master curve, also called stiffening function.

First, the theories from Farris �2� and Furnas �3� are
united. Farris developed and validated a theory to explain the
viscosity reduction that follows from mixing discretely sized
particles with sufficiently large size ratios. The suspension
can then be represented as a coarse fraction suspended in a
fluid containing the finer particles, all fractions behaving in-
dependently of each other. Furnas addresses in his earliest
work the packing fraction of discrete two-component �bi-
nary� mixtures, which was later extended to multimodal par-
ticle packings. For sufficiently large size ratios, a geometric
rule was derived for maximum packing, i.e., the size and
quantity of subsequent particle classes have constant ratios.
In Sec. II hereof, both theories on particle distribution of
noninteracting particles are discussed in detail, and it is
shown that the resulting distributions are complimentary. The
composition at minimum viscosity as proposed by Farris ap-
pears to correspond to the composition at maximum packing
fraction as presented by Furnas.

In Sec. III suspension of bimodal particles with small size
ratio, i.e., geometrically interacting particles, are studied, re-
capitulating the model in �2�. Next, the random close packing
of these bimodal particle packings is addressed �4�. Here, the
unimodal-bimodal limit is studied to relate packing increase
�when size ratio increases� and the associated apparent par-
ticle concentration reduction �fluid fraction increase�. Com-
bining both models, a general equation in closed form is
derived that provides the viscosity of a suspension of mono-
sized particles at all concentrations from the dilute limit to
the random close packing limit. This equation is governed by
the single-sized packing of the particle shape considered ��1�
and the dilute limit viscosity-concentration gradient �C1�. For
spheres, �1�0.64 and C1=2.5. Both for unimodal and for
bimodal �small size ratio� suspensions, in Sec. IV the origi-
nal expressions for the viscosity is compared thoroughly
with current models for dilute systems and with experiments
in the full concentration range and found to be in good ac-
cordance.
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II. MULTIMODAL SUSPENSION AND PARTICLE
PACKING OF PARTICLES WITH LARGE SIZE RATIO

In �3� the packing fraction of polydisperse discrete
particle-size distributions is modeled, and later in �2� an im-
portant article on the viscosity of fluids suspended with mul-
timodal particles was addressed. Both authors provided com-
positions at maximum packing and minimal viscosity, the
theories are addressed in this section, and it is demonstrated
both theories are fully compatible.

A. Unimodal suspension

The unimodal relative viscosity-concentration function is
expressed as H���, where H is the stiffening factor, the ratio
of viscosity with particles divided by the viscosity of the
pure fluid. For a hard particle system, H is a function of the
particle volume concentration, �, and the particle shape
only. For dilute suspensions, the virial expansion of the rela-
tive viscosity to second order in � is

� =
�eff

� f
= H��� = 1 + C1� + C2�2 + O��3� . �1�

For spheres, dominating viscous effects, and ignoring par-
ticle interactions, Einstein computed the first-order virial co-
efficient C1, also referred to as “intrinsic viscosity” as 2.5
�1�. For nonspherical particles, C1 has for instance been com-
puted and measured for ellipsoids and slender rods �5–8�.
The second-order coefficient C2 has among others been de-
termined in �9–16�.

For more concentrated suspension, the most known phe-
nomenological descriptions are the transcendental function
�17,18�

H��� = eC1�/�1−�/�1�, �2�

and the power-law function �19–23�

H��� = �1 −
�

�1 − c���
−C1

= � �1 − �

�1 − �1 − �1���−C1

, �3�

as c= �1−�1� /�1 �23�. Both equations tend to Eq. �1� for
�→0, and diverge for �→�1, i.e., the critical volume frac-
tion. For low shear rates and without interparticle forces,
divergence takes place for � tending to 0.58–0.64 �23–27�.
This critical volume fraction lies near the random close pack-
ing limit, representing the limiting packing fraction above
which flow is no longer possible. For spheres, the random
close-packed fraction, �1, is about 0.64 �28�.

In Fig. 1, Eqs. �2� and �3� are set out for C1=2.5 and �1
=0.64, which are the applicable values for hard spheres. For
high shear rates some ordering is found, e.g., spherical par-
ticles tend to from crystalline clusters and the system seems
capable to flow at volume fraction ��0.64 �26�, but this
does not hold for zero and moderate shear rates, as addressed
here. Furthermore, it is worthwhile to note that in �29� it was
found that when the fluid is Newtonian, the suspension can
be considered as Newtonian as well. The rheological proper-
ties of hard-sphere suspensions with a solid volume fraction
up to 0.3 and a shear rate up to 100 s−1 were measured �29�.
In �30� a Newtonian plafond was found for shear rates below

10−3 s−1 even for a solid volume fraction of 0.635, so close
to divergence.

B. Multimodal suspension

Eveson et al. �31� conjectured that a bimodal suspension
can be regarded as a system in which the large particles are
suspended in a continuous phase formed by the suspension
of the smaller particles in the fluid. In �32� this geometric
concept was further explored and by carefully executed ex-
periments it could be confirmed. In �2� this concept was used
to develop a model based on purely geometric arguments for
the viscosity of multimodal suspensions. It was postulated
that when large particles are suspended in a suspension of
smaller particles, these fractions behave independently. The
resulting viscosity can then be expressed in the unique
viscosity-concentration behavior of the unimodal suspension.
Also the particle size distribution that results in the lowest
viscosity, at a given solid concentration, was derived and
verified experimentally for spheres �2�. Also for nonspherical
particle this concept was successful: for rods and spheres
with large size ratio �length more than ten times the sphere
diameter� �27,33�. So, to describe the viscosity of multimo-
dal mixes, the unimodal concentration function H��� is of
key importance.

Following the concept of �2�, when coarse particles are
added to the suspension of fines, the fine particles behave as
a fluid toward the coarse. In this case of noninteracting par-
ticles, the relative viscosity reads as

� =
�eff

� f
= H��L�H��S� , �4�

in which �L is the volume fraction of large particles in the
total suspension volume and �S is the volume fraction of
small particles in small particle plus fluid volume:

�L =
VL

VL + VS + Vf
, �5�

H(Φ)
eq. (2)

eq. (3)

eq. (46)

H(Φ)

q ( )

[17]

[41]
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FIG. 1. Stiffening function H��� as function of particle volume
fraction � for monosized spheres as predicted by Eqs. �2�, �3�, and
�46� and as measured �taken from Table II and from Fig. 3 �43��.
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�S =
VS

VS + Vf
. �6�

This line of reasoning can be applied to multimodal mixes of
n noninteracting particles whereby each fraction is treated
independently:

� =
�eff

� f
= �

i=1

n

H��i� , �7�

whereby size group 1 has the largest particle size and size
group n the smallest particle size. The concentration � j of
component j is thus governed by

� j =
Vj

Vf + 	
i=j

n

Vi

. �8�

So the concentration � j is the volume of fraction j divided
by the volume fraction of the liquid volume plus the volume
of fraction j and the volumes of all smaller fractions �Vj+1 to
Vn�. Note that this concentration is not equal to the volume
fraction, defined as

xj =
Vj

Vf + 	
i=1

n

Vi

=
Vj

VT + Vf
. �9�

Only for the largest fraction the concentration and volume
fraction coincide, so �1=x1. The total solid volume fraction
is

xT = 	
i=1

n

xi, �10�

which is not equal to �� j. The total solid volume fraction in
the suspension, xT, is related to the individual concentrations
by

1 − xT = �
i=1

n

�1 − �i� . �11�

In �2� it was demonstrated that for particles with large size
ratio �typically 10 or so�, a minimum viscosity is obtained
when � j is a constant, i.e., � j =1− �1−xT�1/n for j=1,2,..., n,
and hence �=H�� j�n.

The volume fraction of fraction j in the entire particle mix
of n fractions is defined as

cj =
Vj

	
i=1

n

Vi

=
Vj

VT
=

xj

xT
, �12�

see Eqs. �9� and �10�.

C. Multimodal packing

Furnas �3� studied bimodal random close packings at first
instance and extended this to multimodal mixtures. Let �1 be

the packing fraction of the uniformly sized particles, then by
combining two noninteracting size groups, so the small par-
ticles are able to fill the void fraction, 1−�1, of the large
particles, one obtains as total bimodal packing fraction:

�T�u � ub� = �1 + �1 − �1��1. �13�

This concept is applicable only when the smaller ones do not
affect the packing of the larger size group. Experiments with
mixtures of discrete sphere sizes revealed that this is obvi-
ously true when u→� �3,34� but that nondisturbance is also
closely approximated when the size ratio is about 7–10 �here
designated as ub�. Furnas �3� called such mixes “saturated
mixtures,” in these mixtures the sufficient small particles are
added to just fill the void fraction between the large particles.
The major consideration is that the holes of the larger par-
ticles �characteristic size d1� are filled with smaller particles
�d2�, whose voids in turn are filled with smaller ones �d3�,
and so on, until the smallest diameter dn, whereby the diam-
eter ratio

u = d1/d2 = d2/d3 etc. � ub. �14�

In general, the packing fraction of multiple mode distribu-
tions of n size groups, with n�1, then read as

�T�u � ub� = 1 − �1 − �1�n. �15�

The volume fraction of each size group j �j=1,2 , . . . ,n� in
the mixture of n size groups follows as:

cj�u � ub� =
�1 − �1� j−1 − �1 − �1� j

�T
=

�1 − �1� j−1�1

1 − �1 − �1�n .

�16�

It can easily be verified that �cj =1. Equation �16� indicates
that the quantities of adjacent size groups have a constant
ratio

cj

cj+1
=

1

1 − �1
, �17�

as is also the case for the particle size ratio of each subse-
quent size group �namely ub�, hence a geometric packing is
obtained �4�.

D. Compositions at minimum viscosity and maximum packing

For fractions with large size ratio �typically 10 or more�,
Farris derived that minimum viscosity is achieved when all
concentrations are equal, whereas Furnas’ packing model re-
sults in optimum packing when the fractions have a constant
ratio �Eq. �11��. Here, it will be shown that the particle size
distribution or composition of the particles is identical.

Following Farris, for minimum viscosity it follows that
for the concentration of each size group is the same, � j is
constant so that holds

� j = �1 = x1, �18�

whereby x1 is the volume fraction of the largest particle size.
Combining Eqs. �8�, �9�, and �18� for size group j yields
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xj = x1�1 − 	
i=1

j−1

xi� . �19�

Combining this equation with the corresponding equation for
size group j+1 yields

xj

xj+1
=

1

1 − x1
. �20�

So, likewise the composition of the multimodal random close
packing recommended by Furnas, also in the recommended
composition for minimum viscosity, the quantities of subse-
quent size groups have a constant ratio; the distribution of
the particles is geometric. It was already conjectured in �24�
that the composition recommended by Furnas would result in
the lowest suspension viscosity.

The total particle volume fraction follows from combin-
ing Eqs. �10� and �20� as

xT�u � ub� = x1�1 + 	
i=1

n−1

�1 − x1�i� = 1 − �1 − x1�n. �21�

The volume fraction of each size group j �j=1,2 , . . . ,n� in
the mixture of n size groups follows as:

cj�u � ub� =
�1 − x1� j−1 − �1 − x1� j

xT
=

�1 − x1� j−1x1

1 − �1 − x1�n . �22�

Whereas for in the Furnas packing the particles are close
packed, in the Farris all particles are suspended in the fluid
so that the Furnas packing the most concentrated state. In
other words, x1	�1 and xT	�T, �1 being the packing frac-
tion associated with random close packing of the monosized
packing. Keeping this in mind, one can once more observe
the similarity in mix composition by comparing Eqs. �16�
and �22�.

E. Bimodal particle mixtures

In this section the Furnas and Farris particle compositions
are specified in the case of bimodal particles �n=2 and j
=1,2� with large size ratio �u�ub�. For bimodal mixes the
subscripts “L” and “S” are used instead of “1” and “2”, re-
spectively. Following Eqs. �16�, Furnas’ model provides for
optimum bimodal packing

cL =
1

2 − �1
, cS =

1 − �1

2 − �1
, �23�

whereby

cL + cS = 1, �24�

indeed. For minimum suspension viscosity, Farris’ model
yields �S=�L or with Eqs. �5� and �6�

VL

VL + VS + Vf
=

VS

VS + Vf
�25�

or using Eq. �9�

xL =
xS

1 − xL
. �26�

This result also follows from Eq. �20� with j=1 applied. For
bimodal suspensions in general Eq. �10� yields

VT = VL + VS, xT = xL + xS, �27�

and for minimum viscosity the fractions of large and small
particles in the solid mixture follows from Eq. �12� as

cL =
xL

xL + xS
=

1

2 − xL
, cS =

xS

xL + xS
=

1 − xL

2 − xL
, �28�

whereby xL	�1.
From the present analysis one can see that whereas for a

unimodal mix the particle volume fraction x1 �or xL� is lim-
ited to �1, for a multimodal mixture the total particle con-
centration xT	�T. One can also consider it from the fluid
side, for a unimodal mixture the fluid volume fraction, this is
1−x1, should be larger than 1−�1, which is the void fraction
of the random close packing. For multimodal packing, owing
to an increased packing fraction, the fluid fraction 1−xT only
need to be larger than 1−�T. The asymptotic behavior can
thus be understood from a particle packing point of view and
geometric considerations only. Here, saturated packings were
considered, so u�ub, in the following section bimodal pack-
ings for which u is close to unity are addressed.

III. BIMODAL MIXTURES WITH SMALL SIZE RATIO

In this section, random bimodal packings and suspensions
of bimodal particles with small size ration are analyzed. The
geometric model of Farris is known to hold for large size
ratios, as outlined in the previous section. Though it seems
not to be noticed so far, Farris also extended this model to
finite and small size ratios u, which will be addressed here.
Furthermore, unimodal random packings on the onset of bi-
modal packing, so u close to unity, exhibit an increased
packing fraction �3,4,34,35�. Here this concept is used to
assess the reduction in concentration when u deviates from
unity. The combination of this “excess fluid concept” and of
Farris’ theory finally results in a differential equation for the
stiffening function H�x�, which is solved analytically.

A. Farris model for small size ratio

The geometric model of Farris is known for large size
ratios, which validity has been extensively confirmed �Sec.
II�. What apparently has not been noticed over the years or at
least has not been remarked upon is that in �2� the model is
extended to finite and small size ratios. From theory and
experiments it was concluded that for interfering particle
sizes, Eq. �4� is still applicable but a part f of the smaller
fraction should be assigned to the larger fraction, and the
remaining part, 1− f , to the small fraction, hence

�L =
VL + fVS

VL + VS + Vf
, �29�
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�S =
�1 − f�VS

�1 − f�VS + Vf
, �30�

whereby f , the so-called crowding factor, depends on the
particle size ratio. For u=1 �monosized particles�, f =1 and
in such case � becomes H��� as �S becomes 0 �hence
H��S�=1� and �L becomes �, see Eq. �4�. That is to say, for
u↓1, the total particle volume fraction xT of the unimodal
particle suspension reads as

xT = xL + xS = � 	 �1. �31�

On the other hand, f =0 for u−1=0, i.e., noninteracting sizes
as discussed in the previous section. In the latter case, obvi-
ously Eqs. �5� and �6� are obtained. For constant xS and vary-
ing xL �2�, provided f as a function of u−1. Obviously, for
u↓1, xL	�1−xS as �	�1. In the vicinity of u−1=1, f is
approximated by

f = 1 − 
�1 − u−1� = 1 − 
�u − 1� + O��u − 1�2� , �32�

whereby 
 is the derivative of f with respect to u−1 at u=1.
Inserting Eq. �32� into Eqs. �29� and �30� yields the follow-
ing expressions:

�L =
VL + VS

VL + VS + Vf
−


�u − 1�VS

VL + VS + Vf

= � − 
�u − 1�xS, �33�

�S =

�u − 1�VS


�u − 1�VS + Vf
=


�u − 1�xS

1 − �
+ O��u − 1�2� , �34�

see Eqs. �9� and �27�. Inserting Eqs. �33� and �34� into the
stiffening functions appearing in Eq. �4�, their Taylor series
expansion for u−1→0 yields the following expressions for
them:

H��L� = H��� − 
�u − 1�xS�
 dH

d�



�

� + O��u − 1�2� ,

�35�

H��S� = H�0� +

�u − 1�xS

1 − �
�
 dH

d�



0
� + O��u − 1�2�

= 1 +

�u − 1�xSC1

1 − �
+ O��u − 1�2� , �36�

whereby Eq. �1� has been used in Eq. �36�, i.e., the first-order
expansion of H��� in the dilute limit. Substituting Eqs. �35�
and �36� in the bimodal stiffening function �Eq. �4�� yields a
first-order expression

� = H��L�H��S� = H��� − 
�u − 1�xS�
 dH

d�



�

−
C1

1 − �
H���� . �37�

This equation, based on the concept in �2�, expresses the
relative viscosity of a monosized suspension a with total con-
centration � that becomes bimodal. The last terms on the
right-hand side Eq. �37� govern the stiffening reduction upon

the transition of unimodal particles to bimodal particles
�u�1� in the suspension.

B. Excess fluid for small size ratio

Robinson �36� presented a modification of the Einstein
equation by considering the free fluid, i.e., the fluid remain-
ing outside of the suspended particles when they are close
packed. Shapiro and Probstein �37� found a correlation be-
tween bimodal suspension viscosity and bimodal RCP. Here
a model is derived for the case that unimodal particles be-
come bimodal, that is to say, their packing fraction increases
and excess fluid is generated. In this model the packing frac-
tion of the suspended particles is relevant.

Equation �13� governs the bimodal packing fraction for
saturated packings, i.e., u�ub. In �4� it was demonstrated
that for u−1 approaching zero, the bimodal packing fraction
can be approximated by

�2�u → 1,cL� = �1 + 4��1�1 − �1�cScL�u − 1� . �38�

Both �1 and � depend on the particle shape and the mode of
packing �e.g., dense and loose� only, for RCP of spheres,
�1=0.64 and �=0.20 �4�. The parameter � follows from the
gradient in packing fraction when a unimodal packing �u
=1� turns into a bimodal packing �u�1�, i.e., it is a scaled
derivative of �2 with respect to u, which is maximum at
parity �cL=cS=0.5�.

It follows that along �u=1, 0�cL�1�, the packing frac-
tion retains it monosized value; physically this implies that
particles are replaced by particles of identical size, i.e., main-
taining a single-sized mixture, and xL+xS=�1. Also along
�u�1, cL=0� and �u�1, cL=1�, the packing fraction re-
mains �1, as this corresponds to the packing of unimodal
small and large particles, respectively.

From Eq. �38� one can see that when a monosized pack-
ing becomes bimodal, the packing fraction increases, like-
wise when particles of large size ratio are combined �previ-
ous section�. Mangelsdorf and Washington �35� already
expressed the increased packing fraction, by combining
spheres with small size, in terms of reduced void fraction of
the packed bed and created excess volume. In such case, less
fluid is needed to fill the voids and excess fluid is created.
This means that a packed bed of monosized particles, i.e.,
�=�1, becomes a suspension when u�1. In Fig. 2, this case
corresponds to Vf −Vrcp�1−�1�=0 with as volume of the ran-
dom close packing, Vrcp=VT /�1: fluid volume Vf in the mix-
ture is just sufficient to fill the voids of the close-packed
particles which have a total solids volume VT.

When u�1, the stiffening function diverges when the
concentration approaches �2 instead of �1. Alternatively, one
can also say that the packed bed contracts, and the excess
fluid becomes available to suspend the particles. This created
excess fluid amounts

Vf =
�2 − �1

�2
Vrcp =

4��1 − �1�cScL�u − 1�VT

�1
+ O��u − 1�2� ,

�39�

see Eq. �38�. The particle volume fraction then reads as
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�2 =
VT

VT + Vf + Vf
= �1 − 4��1�1 − �1�cScL�u − 1�

+ O��u − 1�2� , �40�

as VT / �Vf +VT�=�=�1 for u=1. For a suspension, so when
Vf �VT�1−�1� /�1 and hence �	�1, see Fig. 2, the reduc-
tion in particle volume fraction by letting u�1, follows from

�2 =
VT

VT + Vf + Vf
= ��1 − 4�

�

�1
�1 − �1�cScL�u − 1��

+ O��u − 1�2� , �41�

as VT / �Vf +VT�=�. In other words, Eq. �40� is the special
case of Eq. �41� when �=�1, so a monosized random close
packing as starting situation. Now, the bimodal stiffening
function can expanded for u�1:

� = H��� −
4��1 − �1�cScL�u − 1��2

�1

 dH

d�



�

+ O��u − 1�2� .

�42�

In the previous subsection equivalent Eq. �37� was derived,
based on the model of Farris for u→1. Both models and
resulting equations will be combined in the next subsection.

C. Stiffening function H(�)

The bimodal relative viscosity is governed by both the
Farris concept �Eq. �37�� and by the excess fluid volume
consideration �Eq. �42��. Equating both equations, ignoring
�u−1�2 and higher terms, and substituting xS /� and xL /� for
cS and cL, respectively, yields


� dH

d�
−

C1

1 − �
H���� =

4��1 − �1�xL

�1

dH

d�
, �43�

and it can be seen that both u−1 and xS have cancelled out
from the first-order terms. This implies that by combining
both expansions �Eqs. �37� and �42��, the actual bimodal
character of the particle mix, governed by size ratio u and
composition xS �or xL� is irrelevant.

In the limit of u→1 and � tending to �1 �and hence xL
→�1−xS�, both dH /d� and H��� tend to infinity, but

dH /d� dominates H and hence H / �dH /d�� tends to zero,
i.e., the second term on the left-hand side of Eq. �42� can be
ignored. This feature of the stiffening function H��� is con-
firmed by Eqs. �2� and �3�, and will here be verified a pos-
teriori too. This insight implies that


 =
4��1 − �1���1 − xS�

�1
. �44�

In case xS=0 and hence xL=�, 
=4��1−�1�, and combin-
ing Eqs. �43� and �44� now yield as governing differential
equation of the monosized system in the entire concentration
range

C1H���

�1 − ���1 −
�

�1
� =

dH

d�
. �45�

Separation of the variables H and �, integration and appli-
cation of H��=0�=1 yields

H��� =  1 − �

1 −
�

�1
�

C1�1/�1−�1�

. �46�

This equation is an analytical expression for the unimodal
stiffening function and is derived employing theoretical con-
siderations only. It contains two parameters, the first-order
virial coefficient C1 of the considered particle shape
�C1=2.5 for spheres, the Einstein result� and the random
close packing fraction �1 of the considered particle ��1
�0.64 for spheres�. Hydrodynamic effects are accounted for
by C1 only, governing the single particle hydrodynamics, and
the remaining part of the model is governed by geometric
considerations. The stiffening function diverges when the
particle concentration � approaches �1.

The derivation presumed that H��� / �dH /d��→0 for
�→�1. From Eq. �46� it readily follows that this condition
is met. It also follows that in the entire concentration range
0��	�1 ; dH /d��C1H��� / �1−��, so that the last two
terms on the right-hand side of Eq. �37� imply a viscosity
reduction indeed.

IV. RELATION WITH PREVIOUS WORK

In Sec. III an analytical expression for the stiffening func-
tion is derived based on expressions for bimodal suspensions
with small size ratio. In this section these underlying equa-
tions and the ultimate expression are compared with various
experimental and computational results reported in literature.

A. Small size ratio: Random close packing

For one case, xS=0.25, in �2� stiffening functions versus
xT for various u−1 �Fig. 4 from �2�� were presented and val-
ues of the stiffening factor f against the inverse size ratio u−1

ranging from zero to unity follow. In Table I these values of
f versus u−1 are summarized, and they are set out in Fig. 3.
From this data, 
=0.18 can be derived �Eq. �32��. Substitut-
ing �1=0.58 and 0.64, �=0.20 and xS=0.25, the right-hand
side of Eq. �44� yields 
=0.19 and 
=0.18, respectively.

VT + Vf

Vrcp = VT/φ1

Vf –VT(1 – φ1)/φ1 VT VT(1 – φ1)/φ1

FIG. 2. Schematic representation of a suspension of unimodal
particles with total volume VT and a fluid volume Vf, whereby the
particles are arranged in a random close packing �packing fraction
�1�. The volumes of packed bed Vrcp and of the free �excess� fluid
are indicated.
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This comparison indicates that Farris’ concept for interacting
sizes is valid up to the situation of random close packing and
that 
 is related to �1, �, and xS indeed, see Eq. �44�. It
furthermore confirms that Eqs. �35� and �36� both govern the
bimodal suspensions viscosity for small size ratio in the en-
tire � range.

B. Unimodal: Dilute

For small �, Eq. �46� can be asymptotically expanded as
Eq. �1� with as first-order virial coefficient C1, and as
second-order coefficient

C2 =
C1

2
� �C1 + 1��1 + 1

�1
� . �47�

For spheres, substituting C1=2.5 and �1=0.64 yields C2
=6.33. This value matches very well with C2=6.17 as com-
puted in �10�, who extended Einstein’s first-order approxima-
tion for noninteracting spheres. From this second-order term,
2.5 originates from the far-field hydrodynamics, 2.7 from the
near-field hydrodynamics and 0.97 from Brownian stresses.
By �11,15,16� compatible values of 5.95, 6.03, and 5.56, re-
spectively, or C2 were computed. This latter value of �16� is
based on Fig. 3 from �16�, where most likely kH is set out
�instead of kH���� and on Eq. �36� from �16�, where kH���2 is
given �instead of kH����, ��� being the apparent viscosity
�i.e., the first-order coefficient C1�. Hence kH���2 represents
the second-order coefficient C2, expressed in ��� and kH, the
Huggins coefficient �named after �9��. With these adjust-

ments and considering ���=C1=2.5 for spheres, the formulas
and definitions �e.g., of Huggins coefficient kH� are in line
with the commonly used ones. The monosized value of kH
plotted in Fig. 3 from �16� �i.e., at XL=0 and at XL=1�
amounts 0.89 and hence aforementioned C2=5.56 is ob-
tained.

The present C2=6.33 is also in line with the second-order
expansion of the empirical equations proposed in �38,39�,
and with the model derived in �40�

H��� =
1

1 − 2.5�
= 1 + 2.5� + 6.25�2 + O��3� , �48�

which turned to be accurate at low and even moderate con-
centrations ���0.3�. For nonspherical particles, C1 is larger
than 2.5 and Eq. �47� can then be approximated by

C2 =
C1

2

2
. �49�

This expression is compatible with measured and computed
second-order coefficients �9,12,13�, which typically have de-
nominators ranging from 2 to 2.5, i.e., a Huggins coefficient
of 0.4 to 0.5.

C. Small size ratio: Dilute

For bimodal suspensions with small size ratio, Eq. �42�
was derived. Substituting in this equation the expansion for
dilute suspensions �Eq. �1�� yields

� = 1 + C1� + �C2 −
4�C1�1 − �1�cScL�u − 1�

�1
��2,

�50�

whereby C2, the monosized second-order coefficient of the
stiffening function, is given by Eq. �47�. One can see that the
size effect is having an effect on the second-order term only.
The first-order term is applicable to the case whereby the
volume occupied by the spheres is negligible and hence does
not reckon with sizes. Accordingly, the bimodal particle size
distribution does not affect this term �C1�, it is governed by
the total solid concentration � only. The second-order term,
on the other hand, is directly related to the particle size ratio
and the composition of the bimodal mix, governed by u−1
and cScL �with cS and cL coupled by Eq. �24��, respectively.
The viscosity reduction is governed by the last term on the
right-hand side, containing the reduction in packing fraction
by combining two fractions with different particle sizes �bi-
modal volume contraction�, and C1, the Einstein coefficient,
which is also entering the second-order term.

For dilute suspensions of bimodal spheres, the same ex-
pression as Eq. �50� was found before �11,16�. In �11� the last
term was computed for various size ratio u �u was referred to
“�”�, which are used for reference here. As C2 they deter-
mined 5.95, composed of 2.5+ �IH+ IB� at u=1 �Table 1 from
�11��. For u�1, a similar parabolic equation as Eq. �50� was
obtained to account for the viscosity reduction. The bimodal
viscosity reduction, 4�C1�1−�1��u−1� /�1 appearing in the
second term of the second-order term of Eq. �50�, corre-
sponds to their 2�IH+ IB� at u=1 minus 2�IH+ IB� at u�1.

TABLE I. Crowding factor f versus inverse size ratio u−1 as
extracted from Fig. 4 from Farris �2�.

u−1 f

1 1

0.477 0.9

0.313 0.75

0.318 0.4

0 0

1.0

f

0 6

0.8

f

0.4

0.6

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

u-1

FIG. 3. Values of crowding factor f versus inverse size ratio u−1,
taken from Table I. Line is drawn to guide the eye.
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Using the data from Table 1 of �11�, the resulting
(�IH+ IB�u=1− �IH+ IB�u) /2�u−1� are plotted in Fig. 4. In this
figure also corresponding �C1�1−�1� /�1 with �=0.20, �1
=0.64, and C1=2.5 are included, yielding �C1�1−�1� /�1
=0.281. The substituted values of C1, �1, and � are those

pertaining to spheres, they are all well-defined parameters
with prescribed, so nonadjustable values that follow from
�1,4,28�.

Also Lionberger �16� computed the second-order term of
the dilute bimodal viscosity. In Fig. 4, �C1�1−�1� /�1 values
that can be extracted from the parabolic curves in Fig. 3 from
�16� are included as well, using the corrections explained
above.

One can see that the value following the current model
�0.28� is located between the predictions of both referred
studies and in good agreement. The presented analysis and
comparison confirms that the viscosity reduction by mixing
two particle sizes can fully be explained indeed by the asso-
ciated increased packing ability of such bimodal mixes, i.e.,
by geometric consideration only.

D. Unimodal: Concentrated

Next, the obtained stiffening function is compared with
experimental data of unimodal suspensions, from dilute to
concentrated �close to divergence�. In Fig. 1 measured rela-
tive viscosity values are set out, taken from �17,41,42�,
which are all listed in Table II. Furthermore, in Fig. 1 all data
set out in Fig. 3 from �43� are included, originating from �43�
and three other references quoted in �43�.

In �17,41� glass spheres of a very narrow distribution
were used for viscosity measurements. Reference �42� used

0.7

11 )(1Cβ
ϕ

ϕ−

0.5

0.6 0.281 [11] [16]1ϕ

0.3

0.4

0 1

0.2

0

0.1

1 3 5 7 9 11uu

FIG. 4. Bimodal reduction in the second order coefficient as
computed by Wagner and Woutersen �11� and Lionberger �16�,
against the size ratio u and predicted by computing
�C1�1−�1� /�1 using �=0.20, �1=0.64, and C1=2.5, yielding
0.281.

TABLE II. Values for the stiffening function H��� as measured in �17,41,42,44� and computed with Eq.
�46� for �1=0.61 and �1=0.64.

� �17� �41� �42� Eq. �46� �1=0.61 Eq. �46� �1=0.64 �44�

0 1 1 1 1 1 1

0.050 1.145 1.143 1.143

0.100 1.342 1.33 1.334 1.332

0.102 1.34 1.343 1.341

0.150 1.621 1.597 1.591

0.155 1.67 1.629 1.623

0.200 2.024 2.08 1.976 1.962

0.250 2.632 2.72 2.553 2.516

0.261 2.75 2.720 2.676

0.298 3.60 3.449 3.362

0.300 3.636 3.68 3.498 3.408 2.97/2.99

0.350 5.556 5.45 5.208 4.971

0.361 5.4/5.9 5.768 5.472

0.400 10.53 9.30 8.778 8.076 9.4/9.6

0.450 18.18 20.4 18.09 15.49 18.4/18.6

0.473 18.3 28.08 22.74

0.500 33.33 53.94 39.41

0.517 41.6/43.1 90.83 60.09

0.562 149 822.9 249.5

0.582 386/644 5640 892.9

0.593 1436 3.6�105 2019

0.603 1931/5941 1.9�106 5236

0.634 2.2�106 11.8�106
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monodisperse samples of crosslinked polystyrene microgels
dispersed in bromoform were employed, and the zero-shear
viscosity determined. These suspensions were found to take
the same �1 as in macroscopic random close packings �e.g.,
of glass spheres�. From Table II it follows that all three sets
of measured relative viscosities closely agree with each other
in the entire concentration range. The data taken from �43�
concern Poly�methyl methacrylate�-Poly�hydroxy stearic
acid� spheres in decalin, decalin-tetralin mixtures, mineral
spirits, and SiO2 spheres in ethylene glycol-glycerol mix-
tures.

For high sphere loads, ��0.4, Eqs. �2� and �3� overesti-
mate and underestimate, respectively, the measured values.
Equation �2� could be better fit to the data by augmenting �1,
but this also implies that divergence will take place at a
packing fraction higher than pertaining to random close
packing. In Fig. 1, Eq. �46� is set out from �=0 to � ap-
proaching �1, with �1=0.64. One can see that in the full
concentration range, Eq. �46� and experiments are lying
close together. It appears that the algebraic divergence with
exponent C1�1 / �1−�1�, for the considered spheres with �1
=0.64 and C1=2.5 taking a value of 4.4, matches the empiri-
cal data well. In Table II the computed values are included,
as well those computed with Eq. �46� using �1=0.61. For the
glass sphere experiments and moderate � sphere loads, one
can see that Eq. �46� with �1=0.61 yields better agreement.
This limiting value of � was observed in �25,26�.

E. Small size ratio: Concentrated

For bimodal suspensions with small size ratio, Eq. �42�
was derived. Using Eq. �46� to substitute H and dH /d� in
Eq. �42� yields

� =  1 − �

1 −
�

�1
�

C1�1/�1−�1��1 −
4�C1�1 − �1�cScL�u − 1��2

�1 − ����1 − �� � .

�51�

Equation �51� is applicable in the entire concentration range,
for �→0, Eqs. �46� and �51� tend to Eqs. �1� and �50�,
respectively.

The relative viscosity of concentrated bimodal suspen-
sions of glass spheres with small size ratio �u=2.33� was
measured in �44�, with total concentrations � amounting
0.30, 0.40, and 0.45. In Table II their experimental mono-
sized values are included. One can see that their values are in
line with those of �17,41� and that also for them Eq. �46�
with �1=0.61 provides best agreement with their monosized
values.

For the highest concentration, �=0.45, the values of �44�
are set out in Fig. 5. In this figure, also Eq. �51� with �
=0.20, �1=0.61 and C1=2.5 is drawn. In the entire compo-
sitional range there is good agreement between Eq. �51� and
the experimental values provided in �44�.

V. CONCLUSIONS

In the present paper the relative viscosity of concentrated
suspensions of monosized and multimodal rigid particles,

consisting of equally shaped particles, at zero shear rate is
addressed. In the dilute limit, the hydrodynamics of the in-
dividual particle prevails, governed by the first-order coeffi-
cient C1 �Eq. �1��, which takes the well-known Einstein
value of 2.5 for spheres. When particle interactions cannot be
ignored anymore, it is known that for particles with large
size ratios, the viscosity increase can be described by con-
sidering geometric considerations only.

It was already observed by �32� and later refined by in �2�
that by combining particles which large size ratios, each
large fraction can be considered as suspended in a fluid with
the smaller fractions. The composition of the multimodal
random close packing of such particles at highest packing
fraction was modeled in �3�. Here, for these multimodal dis-
cretely sized noninteracting particles �size ratio u typically
10 or more�, it shown that the composition at lowest relative
viscosity ��2�� actually coincides with the composition of a
random close packing at highest packing fraction ��3��.
These particle arrangements are geometric: i.e., the ratios of
particle sizes and the ratios of pertaining quantities are con-
stants.

Next, to obtain an exact equation for the monosized par-
ticle viscosity-concentration relation, i.e., the stiffening func-
tion; H���, two approaches are followed. Basically, both are
related to packing considerations of bimodal suspensions and
packings of discretely sized particles with small size ratio u.

Using the random close packing fraction of such bimodal
packings, which contract upon combining two sizes, a differ-
ential equation for the apparent fluid increase �Eq. �41�� and
associated viscosity reduction is derived �Eq. �42��. It turns
out that the viscosity of these discrete bimodal particle sus-
pensions is governed by the size ratio u, the gradient of the
monosized stiffening function for the concentration consid-
ered �the Einstein coefficient C1 for a dilute system�, �1 and
�. The latter two parameters follow from the random close
packing of the considered particle shape, �1 is the monosized
packing fraction and � the packing fraction gradient when a
unimodal packing turns into a bimodal packing. In �4� the

18

19

μ

17

18

Eq. (51) [44]

15

16

13

14

12

13

cL
11
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Bimodal relative viscosity as measured by Krishnan and
Leighton Jr. �44� for �=0.45 and u=2.33 as a function of the large
size volume fraction �cL� and as computed with Eq. �51� using �
=0.20, �1=0.61, and C1=2.5.
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parameter � has been derived and values listed and used to
model the packing fraction of random continuous power-law
packings. Here, it turns out that the bimodal random close
packing and related parameter � can be employed to quantify
viscosity reduction.

The second line of reasoning follows the observation in
�2� concerning the viscosity reduction by combining particles
of different size ratios, so not large size ratios only. Farris
also considered the case of interacting sizes and found that
all bimodal suspensions can be described using the same
geometric concept, whereby a crowding factor f �the part of
the finer fraction that behaves as large fraction� depends on
size ratio u only. Here, this concept is employed to derive a
second differential equation �Eq. �37�� that describes the vis-
cosity of a monosized suspension at the onset of turning into
a bimodal suspension. This expression contains the gradient
of f versus u at u=1, viz. 
, governing the gradient when a
unimodal suspension becomes a bimodal suspension. So,
whereas Eveson �32� and Farris �2� demonstrated the appli-
cability of geometric considerations to bimodal suspensions
with large size ratio, here it follows it is also applicable to
such suspensions with small size ratio and that it can be used
to derive the unimodal stiffening function.

Both approaches yield two differential equations for the
bimodal suspension viscosity for small u−1. By combining

both equations that govern the monosized relative viscosity
�stiffening function� at the onset of bimodal suspensions, a
governing differential equation �Eq. �45�� for the stiffening
function H��� is derived, and solved in closed form �Eq.
�46��. The resulting analytical expression for the master
curve is solely governed by C1 and �1. The resulting stiffen-
ing function is found to be in good quantitative agreement
with classical hard-sphere experiments �17,41,42�. It appears
that the algebraic divergence with exponent C1�1 / �1−�1�,
for the considered spheres with �1=0.64 and C1=2.5 taking
a value of 4.4, matches the empirical data well.

Finally, underlying Eqs. �42� and �44� are also validated.
By applying Eq. �42� to data concerning the relative viscos-
ity of bimodal suspensions with small size ratio, this expres-
sion is found to be in excellent agreement with numerical
simulations and experiments �Figs. 4 and 5�. Using data pro-
vided by �2�, Eq. �44� is confirmed as well, which relates 

with �1 and �.
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In Fig. 5 �see Fig. 1 below� of this paper, Eq. �51� is erroneously computed without coefficient C1. Computing Eq. �51�
correctly, so including this factor yields the curve as depicted below. Equation �51� represents the asymptotic approximation
for �u−1�↓0 of the suspension relative viscosity � concerning bimodal spheres.

An alternative approximation follows by substituting Eq. �41� into Eq. �46�, yielding

� =� 1 − ��1 − 4�
�

�1
�1 − �1�cScL�u − 1��

1 −
�

�1
�1 − 4�

�

�1
�1 − �1�cScL�u − 1���

C1�1/�1−�1�

.

Equation �51� is actually the result of asymptotically expanding this equation for small �u−1�. In the figure this expression for
� versus cL is also depicted, again using C1=2.5, �=0.2, �1=0.61, u=2.33, F=0.45, and cS=1−cL. One can see that this
approximate expression matches better than Eq. �51� with the empirical data of �44�.

The author wishes to thank professor Gary Mavko from Stanford University, California, U.S., for retrieving the error
associated with Eq. �51� drawn in Fig. 5.
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FIG. 1. Bimodal relative viscosity as measured by Krishnan and Leighton Jr. �44� for �=0.45 and u=2.33 as a function of the large size
volume fraction �cL� and as computed with Eq. �51� and the combination of Eqs. �41� and �46�, using using �=0.20, �1=0.61, and
C1=2.5.
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Farris �1� stated that his curves �Fig. 4 of �1�� were based on “constant volume fraction of small spheres.” This implies
either �i� constant volume fraction of small spheres in the suspension �xS=const�, or �ii� constant volume fraction of small
spheres in the bimodal mix �cS=const�. The analysis in our paper is based on case �i�. The author shows below that this is
incorrect as in fact case �ii� was meant.

Case �i� implies that xL varies since � is a variable and xL=�−xS in the limiting condition �u−1�↓0. Case �ii� implies that
both cS and cL are constant in the bimodal mix �cS+cL=1�, and for the limiting case �u−1�↓0 it means that xL=cL� and
xS=cS�. Equation �43�, the reasoning following on from this, and applying the limiting value �→�1, we obtain

� = 4��1 − �1�cL, �1�

which implies that now � is a constant, in contrast to � based on case �i�, expressed by Eq. �44�.
Substituting �1=0.58 and 0.64, �=0.20 and cL=0.75 �as cS=0.25�, the right-hand side of Eq. �1� yields �=0.25 and

�=0.22, respectively. These values are compatible with �=0.18 which follows from Farris’ graph and Eq. �32�. It is important
to note that the agreement is best for �1=0.64, i.e., the value pertaining to the random close packing fraction of monosized
spheres.

Following the analysis associated with case �ii�, a value of � is obtained that is constant, as is required, and whose value
is compatible with empirical data provided by �1�. Accordingly, Eq. �1� applies instead of Eq. �44�; for the rest of the paper this
new insight has no additional consequences.

�1� R. J. Farris, Trans. Soc. Rheol. 12, 281 �1968�.
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