A promising process to modify cellulose nanofibers for carbon dioxide (CO$_2$) adsorption

Sima Sepahvanda, Mehdi Jonoobib,*, Alireza Ashorib,*, Florent Gauvinc, H.J.H Brouwersc, Kristiina Oksmand, Qingliang Yuc,*

a Department of Wood and Paper Science and Technology, Natural Resources Faculty, University of Tehran, Karaj, Iran
b Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
c Department of Chemical Technologies, Eindhoven University of Technology P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
d Division of Materials Science, Luleå University of Technology, 971 87, Luleå, Sweden

Keywords:
CO$_2$ adsorption
Cellulose nanofiber
Aerogels
Chemical modification

ABSTRACT

A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO$_2$ adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH$_2$, C–N, and ester bonding COO$^-$ was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH$_2$) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO$_2$ adsorption significantly increased. The CO$_2$ adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO$_3^-$, NH$_2^+$ and ester bonding NCOO$^-$ were visible on the spectra.

1. Introduction

A continuous increment in atmospheric carbon dioxide (CO$_2$) concentration, the second-largest greenhouse gas after water, has attracted significant attention worldwide (Dassanayake, Gunathilake, Jackson, Jaroniec, & Abidi, 2016). CO$_2$ is responsible for more than 75% of total greenhouse gases emissions (Ansaloni, Salas-Gay, Ligi, & Baschetti, 2017), and it is widely known that the increase in CO$_2$ concentration in the atmosphere is a major reason for global warming. A recent study claimed that CO$_2$ concentration of CO$_2$ in the air has increased from approximately 270 ppm before the industrial revolution to near 400 ppm today (Darunte, Walton, Sholl, & Jones, 2016). The continued emission and accelerated increase of concentration in the atmosphere has led to an increased need for efficient, low-cost technologies/devices to capture CO$_2$ (Hornbstel et al., 2013). Many technologies applying various materials that involve different adsorption mechanisms have been developed for CO$_2$ capture. Among these, adsorption processes based on alkanol-amine-water solutions are widely used (Aaron & Tsouris, 2005) because amines react selectively with atmospheric CO$_2$ in the presence of moisture at suitable temperature and pressure (Choi, Dreeze, Eisenberger, & Jones, 2011). In particular, some porous organic polymers have attracted great attention because of their high surface area, low density, and excellent thermal, chemical, and water stabilities (Sung & Suh, 2014). Conventional fibrous media usually suffer from many structural and performance drawbacks such as large fiber diameter, non-uniform fiber diameter and size of pores, relatively low filtration efficiency, high basis weight, and poor high temperature resistance (Adiletta, 1999). It has been well documented that the smaller the fiber diameter, the better the filtration performance and efficiency. Hence, nanofibers could provide high-efficiency filtration by offering a superior “slip effect” that would cause less resistance against the flow, leading to a smaller pressure drop across the fibrous media (Hung & Leung, 2011; Yoon, Hsiao, & Chu, 2008; Ma, Hsiao, & Chu, 2011). Due to its importance, monitoring of CO$_2$ concentration is inevitable, and air purification filters are the most important tool to achieve this task (Mahfoudhi & Boufi, 2017). There are two main types of air filters, namely particulate air filters and chemical air filters. The porous fibrous membranes that make up air filters clean only solid particle pollutants (Liu et al., 2017).

Typically, there are certain requirements for materials that are used for the adsorption of pollutants: (1) low cost, (2) good mechanical and structural integrity to overcome air flow for a specific amount of time, (3) high adsorption capacities with high rates, and (4) a cost-effective regeneration capacity (Mahfoudhi & Boufi, 2017). Among these...
materials, activated carbons have a variety of advantages such as low cost, large pore volume, easy-to-design pore structure, hydrophobicity, high thermal stability, and low energy consumption for regeneration (Hao, Li, & Lu, 2011; Jonoobi, Ashori, & Siracusu, 2019; Stein, Wang, & Fierke, 2009). However, most activated carbons exhibit a relatively low CO₂ adsorption capacity (typically between 2 and 3 mmol g⁻¹ under 25 °C, 1 atm) (Fan, Zhang, Zhang, Shu, & Shi, 2013). However, recent studies have shown that nano cellulose, specially functionalized nano-fibrillated cellulose (CNF) with amine and aminosilane, has a good capability for CO₂ sorption (Gebald, Wurzbacher, Borgschulte, Zimmermann, & Steinfeld, 2014; Sefaqui et al., 2015). CNF is a unique material with outstanding features such as large surface areas, high specific surface area, excellent biodegradability, high strong mechanical properties, eco-friendliness, decomposable property, non-toxicity, light weight, obtainability from different biobased sources/residual, and chemical modification capability due to abundant hydroxyl groups (Chaabouni & Boufi, 2017; Khanjanzadeh et al., 2019). Generally, amine-based derivatives are among the most prevalent groups used to boost adsorption capacity (Mahfoudhi & Boufi, 2017). These groups could be introduced into nanocellulose in two different ways: as part of the process to prepare the nanocellulose or by altering the surface of the nanofibers (Mahfoudhi & Boufi, 2017). In addition to physical properties (such as specific surface area, size of pore and volume of pores), chemical composition could significantly affect CO₂ adsorption, e.g., heteroatom ring nitrogen and groups having a strong affinity towards CO₂ like COO, C=O, OH, and NH₂ (Dawson, Adams, & Cooper, 2011). The main goal of this research was to investigate the CO₂ adsorption of porous CNF as a sustainable renewable material, modified using phthalimide (1,3-dihydro-1,3-dioxoisoindole;) for reactive amino groups. In general, the hydrogen bonding ability of the amide connection causes strong interaction; so, phthalimide is expected to have the potential to be a good choice for CO₂ adsorption, as phthalimide has C=O, COO, and the NH₂ appeared in it after opening the ring (Sepahvand et al., 2019). There is a lack of research on the utilization of phthalimide as a coupling agent modifier for CNF in the production of aerogels. To the best of our knowledge, this is the first attempt to utilize a CNF modified with amino-based phthalimide for CO₂ adsorption.

2. Materials and methods

2.1. Materials

Birch Kraft pulp, kindly provided by SCA Munksund AB (Piteå, Sweden), was ground in a raw material in an ultrafine friction grinder MKA10-20 J (Masuko Sangyo Co., Japan) at 2 wt % consistency for the CNF fibrillation process. Prior to the grinding process, the suspension was dispersed using a shear mixer (Silverson L4RT Silverson Machine Ltd., England). The grinding stones were set to contact mode after the initial feeding of the suspension and gradually adjusted until reaching 90 μm (negative). The stones were coarse silicon carbide (SiC) and the rotor speed was set to 1500 rpm. The grinding was stopped after gel formation and then immersed in liquid N₂ at a temperature of −196 °C. The frozen sample was dried in a freeze dryer (Alpha 1–4 LD plus from Martin Christ) under the following conditions: ice condenser = −57 °C; vacuum ≤ 0.1 mbar; and time = 48 h. The resulting materials are referred to as 0.5% phthalimide-CNF, 1% phthalimide-CNF, and 1.5% phthalimide-CNF; unmodified CNF was used as a control sample.

2.2. Chemical modification

Phthalimide powder was added to a mixture of water/acetatic acid (96/4 (v/v)) with a ratio of 0.5, 1.0, and 1.5 wt %. Since phthalimide is sensitive to direct heat, it was placed inside glycerol oil and continuously stirred at 80 °C for 24 h. The CNF gel was prepared with a concentration of 1 wt % and stirred at 480 rpm for 3 h at room temperature. Subsequently, phthalimide was added to the CNF gel and stirred at 65 °C for 3 h. The pH of the solution was set at 4 by using Ca(OH)₂. The solution of the CNF-phthalimide was centrifuged at 2500 rpm for 10 min to remove the extra phthalimide which did not react with the CNF. A Teflon mold (with a 30 mm diameter and 40 mm length) was mounted on a cylindrical metal base of copper with a 100 mm height and 40 mm diameter. The diluted solution was poured into the Teflon mold in order to create a homogeneous structure, prevent crack and fracture of samples during freezing and the bottom 30 mm of the mold was then placed in liquid N₂ at a temperature of −196 °C. In the last step, the mixture was poured in the copper cylinder and then immersed in liquid N₂ at a temperature of −196 °C. The CNF samples were freeze dried at 72 W with a spot size of 400 μm. Survey scans and region scans were measured at 200 eV and 50 eV, respectively.

2.3. Characterisations

2.3.1. (XPS) analysis

In order to investigate the surface modification of CNF aerogels, the x-ray photoelectron spectroscopy (XPS) was used. The XPS analyses were conducted by using a ThermoScientific-K-Alpha spectrometer (UK) which was fitted out with a monochromatic small-spot x-ray source and a 180° double-focusing hemispherical analyzer with a 128 channel detector. The spectra were obtained using an aluminum anode (Al Kα = 1486.6 eV) operating at 72 W with a spot size of 400 μm. Survey scans and region scans were measured at 200 eV and 50 eV, respectively.

2.3.2. Transmission electron microscopy (TEM)

Aqueous suspensions (0.1 w/v %) of both CNF and CNF-Ph were prepared for TEM analysis. The samples were 100 x diluted in water. A drop (10 μL) of aqueous suspension was deposited on a 200 mesh Cu grid covered with a continuous carbon film. The morphology and CNF-Ph was observed using a FEI Tecnai 20 Sphera (Company FEI, Eindhoven, Netherlands) instrument with a LaB6 filament, operated at an accelerating voltage of 200 kV.

2.3.3. Scanning electron microscopy (SEM)

The morphology of the modified and unmodified CNF aerogels was observed after CO₂ adsorption using an SEM with the BSE detector (Phenom ProX, Eindhoven, Netherlands) at an accelerating voltage of 10 kV. All samples were sputter-coated (2 min and 25 mA) with a gold layer of approximately 15 nm in thickness.

2.3.4. Density and porosity

The apparent densities of Ph-CNF (ρₐ) were calculated by measuring the mass and volume of each aerogel. The weight of the aerogel was measured using analytical balance (readability 0.0001 g, Analytical Balance, Mettler Toledo, USA) and the dimensions (diameter and height) of the aerogel were measured using a digital caliper at four different positions. The aerogel porosity (P) was determined by the density of the aerogel (ρₐ) and the density of CNF (ρₐ) according to the following equation:

$$ P = \left(1 - \frac{\rho_a}{\rho_C}\right) \times 100 $$

2.3.5. BET specific surface area and pore size distribution

The Brunauer-Emmett-Teller specific surface area (BET) of the prepared aerogels was determined by N₂ physisorption using TriStar II Micromeritics (Instrument Corp., USA). Aerogel samples (0.1-0.2 g) were first dried at 115 °C for 4 h and then degassed at 115 °C for 18 h prior to the analysis. The analysis was followed by N₂ adsorption at
– 196 °C. BET analysis was carried out for a relative vapor pressure (P/P₀) of 0.01-0.3 at –196 °C. The average size of pores of the CNF and Ph-CNFe aerogels was estimated from the nitrogen desorption isotherm according to Barrett-Joyner-Halender (BJH) analysis. In addition, the volume of pores (VP) was determined by the density of the aerogel (ρa) according to the following equation:

$$VP = \frac{1}{\rho_a} - \frac{1}{1.5}$$ \hspace{1cm} (2)

2.3.6. Infrared spectroscopy (ATR-IR)

The CNF and Ph-CNFe aerogels with phthalimide were analyzed with a Perkin Elmer Frontier™ Spectrometer (spectrum 400 FT-IR, USA) using the attenuated total reflection (ATR) method (GladiATR) to see if grafting occurred. Spectra were obtained by measuring the 400–4000 cm⁻¹ range at a resolution of 4 cm⁻¹.

2.3.7. CO₂ adsorption

Pressurized air with a CO₂ concentration of 500 ppm was used to evaluate the adsorption capacity of the CNF aerogel. CO₂ adsorption analysis were conducted at different air flow rates (0, 0.2, 0.4, 0.6, and 0.8 L/min), pressures (0, 0.2, 0.4, 0.8, as well as 1 bar), temperatures (0, 25, 45, 65, and 85 °C), and relative humidity’s (0, 25, 40, 65, 80, and 95%) at a constant time of 8 h. The CO₂ adsorption efficiency (η) was experimentally calculated from the CO₂ concentration. Steady state was achieved according to the expression given by Eq. (3) (Molina & Bouallou, 2016).

$$\eta = \frac{C_{CO_2,in} - C_{CO_2,out}}{C_{CO_2,in}} \times 100$$ \hspace{1cm} (3)

where C_{CO_2,in} and C_{CO_2,out} are the inlet and outlet CO₂ concentration, respectively. Outlet CO₂ concentration is a phenomenon whereby CO₂ passes through the surface.

2.3.8. Air flow permeability (pressure drop, ΔP) and quality factor (QF) measurement

The permeability of the adsorbent is defined as the quantity of air which goes through the sample surface during an assured time (1 s) at the surface established conditions of the test and pressure drop. The cylindrical aerogel sample composition for all the test filters was similar with effective diameter (28 mm) and height (12 mm), which was the thickness equivalent of the filter. The suction flow was provided by a vacuum pump and increased progressively till a stable depression of 100 Pa was reached. The aerogel permeability was obtained by dividing the airflow rate by the effective aerogel area, according to Eq. (4) (Olmedo, Aragón, Garcia, Torrent, & Ramón, 2008).

$$R = \frac{Q}{T \times A} \text{ (ml/s cm²)}$$ \hspace{1cm} (4)

The permeability (R) was based on the flow of gas (Q) at time (T) and the specific pressure of the cross-section of the filter (A). The performance of porous filters is typically shown with a quality factor (QF), also known as the figure of merit, which is the ratio of the penetration rate of articles η to the pressure drop across the filter ΔP, QF was calculated according to Eq. (5) (Shou et al., 2015).

$$QF = -\frac{\ln(1 - \eta)}{\Delta P}$$ \hspace{1cm} (5)

where QF is the quality factor, η is the CO₂ adsorption efficiency, and ΔP is the pressure drop.

2.4. Statistical analysis

All the data were subjected to Analysis of Variance (ANOVA) and the difference between means was evaluated using Duncan’s Multiple Range Test at a confidence level is 95%. The SPSS statistic program (Version 20.0) was used for data analysis.

3. Results and discussion

3.1. X-ray photoelectron spectroscopy (XPS)

The XPS spectra of the CNF and Ph-CNFe aerogels are shown in Fig. 1(A–C). Fig. 1(A) shows the spectrum of CNF and surface Ph-CNFe. As expected, the spectrum of CNF only shows two peaks in the range of 284.7 eV and 536.34 eV, which are related to carbon (C1s) and oxygen (O1s), respectively. On the other hand, besides the oxygen and carbon peaks, new nitrogen (N1s)-related peak in the range of 399.36 eV appears for the Ph-CNFe (Lu, Askeland, & Drzal, 2008). As Fig. 1(B) shows, the spectrum of nitrogen (N1s region) is fitted with two peaks. The peak at 399.36 eV can be attributed to the presence of free amino groups (-NH₂) in the phthalimide after opening the ring. The formation of an amine group confirms the presence of amino groups on the surface of Fig. 1. XPS spectrum of CNF and Ph-CNFe (A), deconvolution of its N₁s peak (B), and deconvolution of its C₁s peak (C).
the CNF (Böcking, James, Coster, Chilcott, & Barrow, 2004; Lu et al., 2008). This peak's intensity increases with increased phthalimide loading. Moreover, the peak at 401.4 eV is related to quaternary type nitrogen functionalities (Song & Peng, 2009). Fig. 1(C) shows the C1s spectrum for CNF and Ph-CNF. In this spectrum the presence of four types of carbon bonds are observed, these bonds correspond to the following carbon interactions for CNF: C1 (C–C/C–OH) 284.7 eV, C2 (C–O, C–N) 286.4 eV, C3 (C=O, N–C=O) 287.6 eV, and C4 (O–C=O) 289.2 eV (Gao et al., 2013), also for Ph-CNF C1 (C–C/C–OH) 284.5 eV, C2 (C–O, C–N) 286.1 eV, C3 (C=O, N–C=O) 288 eV, and C4 (O–C=O) 289 eV. Pure CNF shows only a negligible amount of the carboxylic group (O=C=O), but after modification with phthalimide it can be observed that the intensity of the C1 and C4 peaks increases while the intensity of the C2 and C3 peaks decreases. The C1s spectrum for pure phthalimide consists of two main peaks: The first peak at the higher binding energy (289.3 eV) corresponds to C=O atoms while the second peak is attributed to the phenylene ring (C–H) at the binding energy of 286 eV (Chenite & Selmani, 1994). The relative atomic concentration and oxygen-to-carbon (O/C) ratios are summarized in Table 1. Marginally below the 0.83 value of theoretical O/C, XPS measurement gives the O/C atomic ratio of CNF of 0.75. This is possibly due to the existence of pollutants and other compounds on the surface (Tingaut, Hauert, & Zimmermann, 2011). Furthermore, the O/C ratio decreases when the amount of phthalimide (0.5, 1 and 1.5%) increases from 0.75 to 0.67, 0.48, and 0.42, respectively. The reduction in the O/C, the presence of the NH$_2$ group in the Ns1 spectra, and the corresponding increase in the contribution of the C1 and C4 carbons (C–C/C–OH and O=C=O) clearly show the occurrence of expected surface modification of the CNF.

3.2. Morphology analysis

3.2.1. TEM

The structure and size of the CNF were studied by transmission electron microscopy (TEM). Fig. 2A shows the TEM image of the isolated CNF, indicating that the used CNF are below 100 nm, the diameter ranged from 20 to 50 nm, and the length is estimated to be several micrometers. It should be noted that the surface charge of CNF, measured by zeta potential, was -52.5 (Sepahvand et al., 2019).

3.2.2. SEM before and after of CO$_2$ adsorption

The morphology of the modified CNF before and after CO$_2$ adsorption tests were examined by SEM and is shown in Fig. 2B (a and b), respectively. Fig. 2B (a) indicates that the modified CNF aerogel morphology has a sheet-forming structure due to the existence of phthalimide in the surface CNF; also, as can be seen, the surface consists of many pores resulting in high porosity. Fig. 2B (b) illustrates that there is no change in the structure of the modified CNF, even in the volume of pores or porosity, after the adsorption of CO$_2$, which was confirmed by the BET test. This is owing to the presence of amine groups on the surface CNF, which can react with CO$_2$ without making any changes on the surface. Indeed, it seems that the CO$_2$ adsorption occurs on the surface (Gebald, Wurzbacher, Tingaut, Zimmermann, & Steinfeld, 2011).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>O/C</th>
<th>C$_{1s}$</th>
<th>O$_{1s}$</th>
<th>N$_{1s}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF</td>
<td>0.75</td>
<td>58.60</td>
<td>44.09</td>
<td>–</td>
</tr>
<tr>
<td>CNF-Ph0.5</td>
<td>0.67</td>
<td>61.02</td>
<td>40.73</td>
<td>1.2</td>
</tr>
<tr>
<td>CNF-Ph1.0</td>
<td>0.48</td>
<td>62.82</td>
<td>30.26</td>
<td>3.7</td>
</tr>
<tr>
<td>CNF-Ph1.5</td>
<td>0.42</td>
<td>66.00</td>
<td>27.50</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Fig. 2. A) TEM image of CNF. B) SEM of CNF and phthalimide-modified CNF (a) before and (b) after CO$_2$ adsorption test.
Table 2

BET surface area, size of pores and volume of pores CNF and Ph-CNf aerogels.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Density (g/cm³)</th>
<th>BET (m²/g)</th>
<th>Aver. size of pores (nm)</th>
<th>Porosity (%)</th>
<th>Volume of pores (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF</td>
<td>0.0105 ± 4</td>
<td>272</td>
<td>14.3 ± 4</td>
<td>99.4 ± 4</td>
<td>94.6 ± 4</td>
</tr>
<tr>
<td>CNF-Ph0.5</td>
<td>0.0112 ± 2</td>
<td>283</td>
<td>11.5 ± 2</td>
<td>99.2 ± 2</td>
<td>88.6 ± 2</td>
</tr>
<tr>
<td>CNF-Ph1.0</td>
<td>0.0138 ± 6</td>
<td>319</td>
<td>7.4 ± 6</td>
<td>99.07 ± 6</td>
<td>71.7 ± 6</td>
</tr>
<tr>
<td>CNF-Ph1.5</td>
<td>0.0164 ± 4</td>
<td>335</td>
<td>3.2 ± 4</td>
<td>98.8 ± 4</td>
<td>60.3 ± 4</td>
</tr>
</tbody>
</table>

* Different lowercase letters in the same column show the significant difference (P < 0.05).

3.3. Aerogel characteristics

The results of the analysis of variances show a significant effect of different phthalimide loadings on density, porosity, specific surface area and size of pores of the resulting aerogels at a 95% confidence level. The Duncan multiple range test results (provided in Table 2) showed that at low phthalimide fraction (< 0.5%), the difference in mean density and porosity is not significant. However, at higher fraction (i.e. > 0.5%) there is a significant difference in the mentioned properties.

Concentration is one of the factors that affect the porosity and density. As the phthalimide concentration increased, the structure became denser and more compact, which results in an increase in density and a decrease in porosity (Feng, Nguyen, Fan, & Duong, 2015; Rafieian, Hosseini, Jonoobi, & Yu, 2018). In addition, Table 2 shows that the specific surface area of the modified CNF increased with the increasing phthalimide content, as the highest phthalimide specific surface area (335 m²/g) happened when 1.5% phthalimide. It was also observed that with higher phthalimide fraction, the size of pore and the volume of pores decreased due to its high density which makes the aerogels compressed and denser (Rafieian et al., 2018; Rafieian, Jonoobi, & Yu, 2019; Rafieian, Mousavi, Yu, & Jonoobi, 2019).

3.4. ATR - IR before adsorption CO₂

Phthalimide has a hydrophilic head (-NH) and a hydrophobic end; hence, CNF could create hydrogen bonds with the fiber surface at the hydrophilic head (Marzbani, Resalati, Ghasemian, & Shakeri, 2016). The interaction between the phthalimide and the CNF surfaces, as studied by ATR-IR spectrometry, are shown in Fig. 3A and B. As can be seen from Fig. 3A, the curve (a) represents the spectrum of pure phthalimide. The peaks located at 1600 cm⁻¹, 3305 cm⁻¹, and 1713 cm⁻¹ are, respectively, associated with the aromatic stretching, the stretching vibrations of secondary N–H amide bands, and conjugated C═O bonds (Marzbani et al., 2016). The CNF spectrum (curve b) shows a number of characteristic bands such as O–H stretching at 3346 cm⁻¹, C–H stretching at 2901 cm⁻¹, and C–O–C skeletal vibrations at 1053 cm⁻¹, while O–H and C–H bending along with C–C and C–O stretching are located at 1376, 1310, and 1253 cm⁻¹, respectively. All the peaks were identified as typical cellulose peaks (Kumar, Negi, Choudhary, & Bhardwaj, 2014). For Ph-CNf (curves c, d, and e), all spectra show the emergence of small new peaks located at approximately 1750 cm⁻¹ (1740-1750 cm⁻¹), 1273 cm⁻¹ (1270-1273 cm⁻¹), and 790 cm⁻¹ (780-790 cm⁻¹) which are assigned to ester bonding COO-, C–N stretching, and NH₂ wagging, respectively. Thus, the existence of all the new peaks in the CNF spectrum indicate that chemical modification had occurred and that the phthalimide has grafted to the O–H functional groups on the CNF surfaces. Furthermore, Fig. 3B shows the ATR-IR spectrum of CO₂ adsorption after 8 h for modified and unmodified CNF. Up to now, no data on the ATR-IR spectra of CO₂ adsorption on phthalimide-modified CNF is available. As can be seen, the ATR-IR spectrum of unmodified CNF shows one peak, while the modified CNF shows three new peaks around 1369, 1466 and 1568 cm⁻¹. The bands at 1369 cm⁻¹, 1466 cm⁻¹, and 1568 cm⁻¹ can be assigned to HCO₃⁻, CO₃²⁻, and CO₂ adsorption in increased meaning the effectiveness and efficiency of the resulting material is much better in the long term. When the CNF
was modified with phthalimide the adsorption of CO$_2$ improved, this was reflected by the increasing adsorption capacity ranging from 2.8, 4.4, and 5.2 mmol.g$^{-1}$ corresponding to the phthalimide dosages of 0.5, 1.0, and 1.5%, respectively. The adsorption efficiency of the modified CNF also improved by increasing phthalimide loading, with the best results associated to the 1.5% phthalimide dose. This can be related to the existence of the amino group, C=O bond on the surface-modified CNF, and the increased surface area, which all contribute to higher CO$_2$ adsorption. The highest CO$_2$ adsorption level reported in the literature is 2.3 mmol.g$^{-1}$ by Gebald et al. (2014).

3.6. Influence of pressure and humidity

Modified and unmodified CNF aerogels with different amounts of phthalimide were investigated to examine how pressure and humidity can affect their structure and CO$_2$ adsorption performance. Influence of different pressure and humidity on the outlet CO$_2$ concentration and the CO$_2$ adsorption of modified and unmodified CNF aerogel are shown in Fig. 5A and B. Increasing phthalimide loading as well as measurement pressure (from 0.2 to 1 bar) under specific conditions (8 h, room temperature, and ambient humidity) caused the outlet CO$_2$ concentration to decrease. To fully characterize the amine-based adsorbents, the CO$_2$ adsorption rate as a function of pressure were reported (Fig. 5A (a, b)). The results clearly indicate that the CO$_2$ adsorption improved significantly by increasing pressure from 4 to 7.1 mmol.g$^{-1}$. This is because CO$_2$ has a large quadrupole moment, which is the reason for its strong interaction with the functional groups present on the surface at high pressure (Dassanayake, Gunathilake, Dassanayake, Abidi, & Jaroniec, 2017; Salehi & Anbia, 2017). In addition, aerogels with different phthalimide loadings were investigated to study how humidity level affects the structure and CO$_2$ adsorption performance of modified and unmodified CNF. Fig. 5B (a) shows the outlet concentration of CO$_2$ for modified and unmodified CNF aerogels at different humidities ranging from 25 to 95% for the same time (8 h), pressure (1 bar), and room temperature. As can be seen in the figure, when phthalimide loading and humidity increases the outlet CO$_2$ concentration decreases. CO$_2$ adsorption rate as a function of relative humidity (RH) were also reported (Fig. 5B (b)). The results can be used to explain why high humidity levels lead to greater CO$_2$ adsorption for modified and unmodified CNF aerogels. CO$_2$ adsorption increased when the phthalimide loading increased from 0.5 to 1.5% in the modified CNF aerogels, the highest level of adsorbed CO$_2$ was reached at RH 95% and a phthalimide of 1.5% (5.5 mmol.g$^{-1}$). This is probably due to the amines existing in the phthalimide, which caused CO$_2$ adsorption under the catalytic effect of RH, high pressure at ambient temperature (Choi et al., 2011). Since polar water molecules and non-polar CO$_2$ molecules easily dissolve in water, increasing RH leads to improved CO$_2$ adsorption.

3.7. Influence of temperature and flow rate

In addition to humidity, temperature and flow rate are other critical environmental factors that can affect CO$_2$ adsorption. Hence, the effects of temperature and flow rate on CO$_2$ adsorption were investigated. The influences of different temperature and flow rate on outlet CO$_2$ concentration and the CO$_2$ adsorption of modified and unmodified CNF aerogel are shown in (Fig. 6A and B). For this purpose, practical atmospheric temperatures from a range of 25 to 85 $^\circ$C were chosen to study the effects of temperature on the CO$_2$ adsorption of the filters. Fig. 6A (a) shows the outlet CO$_2$ concentration for modified and unmodified CNF aerogels in response to different temperatures for the same time (8 h) and pressure (1 bar). As can be seen, the outlet CO$_2$ concentration decreased. Fig. 6A (b) indicates the results of temperature change on the adsorption of CO$_2$. It can be seen that as the temperature and phthalimide loading increase from 25 to 85 $^\circ$C and 0.5 to 1.5%, respectively, the adsorption of CO$_2$ increased from 4.1 to 6.5 mmol.g$^{-1}$. This phenomenon could be explained by the fact that the amino groups of phthalimide accelerated CO$_2$ adsorption. Overall, the temperature was found to have a greater influence on the adsorption of the CO$_2$ than flow rate, especially when the pressure was high, since increasing temperature and pressure promotes the kinetic energy of CO$_2$ molecules resulting in an increase in the CO$_2$ adsorption (Dassanayake et al., 2017; Guan, Liu, Li, Wang, & Zhao, 2018).

In addition, the effects of different airflow rates on the structure, CO$_2$ adsorption, and performance of modified and unmodified CNF aerogels with different amounts of phthalimide were also studied. Fig. 6B (a) shows the amount of the outlet CO$_2$ concentration for CNF aerogels with and without phthalimide modification as a function of flow rate. As can be seen, increasing the amount of phthalimide and flow rate from 0.2 to 0.8 l/min under specific conditions of time (8 h), pressure (1 bar) at room temperature, and ambient humidity caused the outlet CO$_2$ concentration to decrease. To better understand the characteristics of the amine-based adsorbents, the CO$_2$ adsorption rate as a function of flow rate was also reported in Fig. 6B (b). It was observed that increasing the flow rate in the modified and unmodified CNF at 0.5% phthalimide loading had no significant effect on the adsorption of CO$_2$, but it increased the CO$_2$ adsorption efficiency when the amount of phthalimide rose. This can be explained by the fact that when the flow rate increased the interfacial area between the CO$_2$ molecules and amino groups also increased. The enhanced CO$_2$ molecules transfer rate and improved CO$_2$ adsorption efficiency results are in agreement with a recent study (Rahmandoost, Roozbehani, & Maddahi, 2014).
Fig. 5. A) Influence of different pressures and B) Influence of different humidities on (a) outlet CO₂ concentration and (b) the CO₂ adsorption of modified and unmodified CNF aerogel.

Fig. 6. A) Influence of different temperatures and B) Influence of different flow rates on (a) outlet CO₂ concentration and (b) the CO₂ adsorption of modified and unmodified CNF aerogel.
3.8. Air flow permeability (pressure drop, ΔP) and quality factor (QF) measurement

In addition to the adsorption of CO$_2$, the pressure drop or airflow resistance of an air filter is another parameter related to filtration performance. It should be noted that air filtration efficiency should also take into account the airflow resistance (or pressure drop) since it is related to the filter’s energy consumption. High filtration efficiency possesses a pressure drop of less than 325 Pa at a standard air face velocity of 5 cm/s (DOE standard, 2005). Fig. 7(a) shows a quantitative study on the effects of airflow resistance on the unmodified and modified CNF with phthalimide ratios of 1:0.5, 1:1, and 1:1.5%. As the figure shows, the pressure drop generally decreases linearly, which might be related to its surface area, size of pores, fiber diameter and pore structure. It has already been suggested that a good air filter should have a high QF value, in other words, a good air filter can achieve high adsorption efficiency with a low pressure drop or air resistance (Souzandeh, Johnson, Wang, Bhamidipaty, & Zhong, 2016). A comparison of QF values among different types of air filtering with modified and unmodified CNF is shown in Fig. 7(b). This comparison demonstrates that the optimized CNF modified with 1.5% phthalimide has the highest QF value (0.072 Pa$^{-1}$) among these different types, implying that the CNF with 1.5% phthalimide provides the best filtration performance.

3.9. Influence of humidity, temperature, pressure, and flow rate on the airflow resistance (ΔP)

It is proven that environmental conditions, such as humidity, temperature, pressure, and flow rate, can noticeably change the pores structure of the filter, and subsequently considerably affect the air flow inside the filter (Souzandeh, Molki et al., 2017; Souzandeh, Scudiero, Wang, & Zhong, 2017). Therefore, in addition to the adsorption efficiency, air flow resistance (also known as pressure drop (ΔP)) for the modified and unmodified CNF aerogels were studied at different humidity, pressures, flow rate levels, and higher temperatures (Fig. 8). As can be seen from Fig. 8(a), the pressure drop slightly increased when temperatures of the modified and unmodified samples increased. The unmodified sample possessed a pressure drop ranging from 168 to 178 Pa, while the CNF samples modified with phthalimide amounts of 0.5, 1, and 1.5% showed an air flow resistance ranging from 143 to 151, 142 to 150, and 140 to 148 Pa, respectively, when the RH increased from 25 to 95%. The trend of decreasing air flow for the modified samples as compared to the unmodified samples may be due to the solubility of some of the phthalimide in high moisture content (Souzandeh, Molki et al., 2017; Souzandeh, Scudiero et al., 2017). Nevertheless, the results indicate that moisture does not have a significant effect on the structure of the samples. As shown in Fig. 8(c), the pressure drop increased only slightly from 148 to 157 Pa for unmodified CNF and from 146 to 154, 145 to 152, and 144 to 150 for CNF modified with phthalimide loadings of 0.5, 1, and 1.5%, respectively, when the pressure increased from 0.2 to 1 bar. This increase in flow rate could also be due to greater thickness since the increased thickness resulted in an increase in pressure drop. In fact, thickness is an effective parameter on the pressure drop of an air filter (Zhang et al., 2016). The effect of flow rate on air flow resistance of the modified and unmodified CNF is shown in Fig. 8(d). This increase could be due to changes in the airflow pathway as it passes through the thickness of the filter (Souzandeh, Molki et al., 2017; Souzandeh, Scudiero et al., 2017). In summary, for all samples the pressure drop slightly increased under the above conditions, but this pressure drop was below the DOE (Department of Energy) standard. In other words, the above conditions do not have a considerable effect on the fiber diameter and pores structure.

4. Conclusions

This study showed that phthalimide-modified CNF represents a promising green nanomaterial with great potential for CO$_2$ adsorption from the atmosphere. The following conclusions can be drawn from the results of this study. The ATR-IR analysis revealed three new peaks of COO$^-$, C–N, and NH$_3$, which confirm the success of grafting phthalimide on CNF. BET analysis revealed an increase in surface area and a decrease in size of pores after the modification of CNF. The XPS results showed that the peak at 399.39 eV can be attributed to the existence of free amino groups (-NH$_2$) in the phthalimide. In total, the nitrogen content increased with the increase in phthalimide loading. However, the thermal stability of the modified CNF decreased, this is probably due to the replacement of OH groups in the CNF by NH$_2$ groups in the phthalimide. In general, increasing the amount of phthalimide (1.5%) in the modified CNF significantly increased the adsorption of CO$_2$. This phenomenon is probably due to the incorporation of amine groups on the surface of the modified CNF, and also the increase in the surface area as a result of the addition of phthalimide. Temperature, humidity, pressure and flow rate have a strong influence on CO$_2$ adsorption without changing the CNF’s structure. Increasing the temperature, humidity, pressure, and flow rate caused an increase in the pressure drop, especially in unmodified CNF samples, although the increase was less.

Fig. 7. (a) Pressure drops and (b) quality factors of modified and unmodified CNF.
than the DOE standard (325 Pa). The modified CNF is able to decrease the air flow resistance (pressure drop) while also increase the Quality Factor, which are the most crucial factors for practical applications.

Acknowledgment

The authors thank the University of Tehran, Iran and the Iran Nanotechnology Initiative Council (INIC), Iran. Moreover, many thanks to the Department of the Built Environment of the Eindhoven University of Technology for funding this research; and the Bio4Energy Program, Sweden for providing financial support during this research.

References

