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Abstract
Cellular automata are frequently used to model chemical reactions and processes. In

this paper, a direct relation is established between chemical kinetic models for

surface and diffusion controlled reactions and cellular automata parameters. The

considered particles are allowed to have growing/shrinking sizes, caused by the

difference in the volume of the consumed reactant and the formed reaction product.

From the moment a minimum diffusion layer thickness is obtained, the cellular

automata approach can be applied to study the diffusion (ash layer) controlled

model for both cases. In order to be able to also describe the reaction before this

minimum diffusion layer thickness is formed, chemical reaction controlled and

diffusion controlled models are combined here. Applying this hybrid model, a

closed-form relation is found between the cellular automata parameters (particle

size, reaction probability) and the fundamental kinetics of surface (b1) and diffusion

(b2) controlled reactions.

Keywords Reaction kinetics � Cellular Automata � Chemical reaction

kinetics � Diffusion controlled � CEMHYD3D

Abbreviations
CRC Chemical reaction controlled model

CA Cellular automata

SCM Scrinking (unreacted) core model

PCM Progressive core model

Latin
C Concentration

C Cycle Number

& A. C. J. De Korte

a.c.j.dekorte@gmail.com

1 Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands

123

Reaction Kinetics, Mechanisms and Catalysis (2018) 125:471–492
https://doi.org/10.1007/s11144-018-1455-4(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-1811-632X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-018-1455-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11144-018-1455-4&amp;domain=pdf
https://doi.org/10.1007/s11144-018-1455-4


Ce Effective concentration

Ctr Number of Cycles at the transition from chemical to diffussion controlled

reaction

De Effective diffusion coefficient

k1 Kinetic parameter for the chemical reaction model

k2 Kinetic parameter for the diffusion controlled model

P0 Basic dissolution probability of a voxel

P1 Dissolution probability of a voxel in the chemical reaction controlled phase

P2 Dissolution probability of a voxel in the diffusion controlled phase

r0 Initial radius of the particle

rc Radius of the unreacted core of a particle

rc,tr Radius of the unreacted core of a particle at the transition point

re Outer radius of the particle including the ash/product layer which is formed

rp Radius of the particle in cellular automata

t Time

ttr Point in time of the transition from chemical to diffusion controlled reaction

v Volume ratio of product formed to the reacted reactant

V0 Initial volume of the particle at t = 0

Vc Volume of the unreacted core of a particle

Ve Total volume of a particle including the ash/product layer which is formed

Greek
a Reaction degree

atr Reaction degree at the transition from chemical to diffusion controlled reaction

b1 Relation constants for linking the chemical reaction controlled model to

cellular automata model

b2 Relation constants for linking the diffusion controlled model to cellular

automata model

d The layer thickness of the ash/product layer

dtr The layer thickness at the transition point

s1 Time needed for full conversion/reaction/hydration time (a = 1) in the

chemical reaction controlled model

s2 Time needed for full conversion/reaction/hydration time (a = 1) in the

diffusion controlled model

s3 Time needed for full conversion/reaction/hydration time (a = 1) in the hybrid

model

Introduction

Chemical reactions have been studied for hundreds of years. Reactions can be

described based either on spatial and temporal progression of reactions in solids.

The progression of chemical reactions by chemical reaction engineering theorists is

typically performed using spherical models in an infinite space. Besides these

models also other methods have become available such as cellular automata (CA),
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which enable the reaction simulation of arbitrary shaped and densely packed

particles.

Cellular automata are therefore already commonly used for the modeling of

chemical systems [1–11]. Cellular automata systems are among others applied for

studying biology, cement reaction, population growth, computability theory,

mathematics, physics, complexity science, theoretical biology and microstructure

modelling. In [12], the focus was on the application of the cellular automata

approach to study the chemical reaction controlled model, which can for instance be

found in [13]. A unique relation between the simulations using cellular automata

approach and chemical reaction controlled model was established [12, 14].

In many reactions, however, a layer of reaction products is formed on the

unreacted core, and the so-called diffusion model then applies [13, 15–17]. The

present article, part of a larger study [14], addresses the situation, in which the

reaction product will precipitate on the surface of the unreacted core. Hereby two

situations are considered, i.e. in the first case the volume of the reaction product

equals the volume of the consumed reactant (v = 1) (‘‘Constant particle size’’

section) and in the second case the volume of reaction product is unequal to the

volume of reactant (v = 1) (‘‘Varying particle size case’’ section). This is done

using the combination of a chemical reaction controlled model and a diffusion

controlled model. Due to the discrete nature of cellular automata, the start of the

reaction is still chemical reaction controlled, since first a certain—discrete—layer

thickness needs to be formed. Therefore, a hybrid model is introduced in this paper

(‘‘Hybrid model’’ section) of which the first phase is chemical reaction controlled

and second phase is ash diffusion controlled. This hybrid model is a combined

application of the already known models from literature. The relation between

general reaction kinetic models and cellular automata is of interest for the further

improvement of cellular automata reaction models. Since reactions often follow the

shrinking core model, cellular automata models need to be able to model these

reactions. In this paper, part of PhD-study of the corresponding author [14], closed-

form relations are derived between fundamental chemical properties of diffusion

controlled reaction on the one hand, and cellular automata parameters on the other.

Chemical reaction models

Introduction

In the literature of chemical kinetics, two approaches can be distinguished: the zone

reaction model or progressive-conversion model (PCM) [18] and the shrinking

unreacted core model (SCM). Within the progressive-conversion model, the solid

reactant is converted continuously and progressively throughout the particle within

the PCM, while the reactions according to the SCM take place on the outer skin of

the particle and the zone of reaction is moving into the solid leaving behind

completely converted material and inert solids.

The two reaction kinetic approaches can be considered as the two limiting cases

of the reality and actually a combination of both models should be applied [19].
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Therefore the model of Ishida et al. considers the shrinking core model as a special

case of the progressive conversion model [18, 20].

Three resistances to reaction can be distinguished namely, film diffusion, ash

diffusion and reaction controlled (surface area controlled). The rate-controlling step

is determined by the highest resistance of these three [21–23].

Within the SCM, the assumption of unchanging or changing particle size is

crucial, since it determines the available reaction surface. This assumption has

largest influence in the film diffusion-controlled system. In the case of the

unchanging particle size, the surface area of the original particle is used, while in the

changing particle size case the surface area of the unreacted core is used.

Both the SCM and PCM reaction models are considered to have a single reaction

mechanism as dominant. In practice, often a combination of reaction mechanisms

are present. Di Liddo and Stakgold [24] introduced a model for the combustion of a

porous solid with two moving fronts, one of which is distributed through the entire

porous solid and the other of which has partial conversion ahead of it. Braun et al.

[19] introduced a reaction model for a flat solid particle with two reactions with the

fluid at two moving boundaries. A diffusion-controlled reaction creates an ash layer

in the particle according to the unreacted core shrinking model. The second process

burns off this ash layer (resulting in the shrinkage of the whole particle) and the

process is chemical reaction controlled. Braun et al. [25] give an analytical solution

for the equations in this reaction system using a Lambert W function. Ogata et al.

[26] and Homma et al. [27] give a similar system for spherical particles. Unlike the

model presented by Braun et al. [19, 25] for two dimensional Cartesian coordinates,

the model of Ogata and Homma cannot be solved analytically. Therefore, Homma

et al. solve their equations numerically and using the Euler method with a very small

interval for the partial reaction degree. Therefore their method cannot directly be

applied. In this paper a different approach is used, which enables the analytical

solution of the system but lacks some sophistication of the method of Braun et al.

[19] and Ogata et al. [26] for plates and spheres, respectively. Nevertheless the

method introduced here has sufficient reliability.

The chemical reaction controlled mechanism, sometimes also referred to as

phase-boundary mechanism, was related to cellular automata parameters. This paper

deals with the hybrid system; this system is chemical reaction controlled (CRC)

until the so-called transition point and becomes diffusion controlled from there

onwards. The transition point (dtr) is the moment an ash/product layer of certain

thickness (the so-called dtr) is formed. Fig. 1 provides a graphical overview of the

studied system. Besides the thickness of ash/product layer, this point can be

described by the time needed to reach this point ttr, the radius of the unreacted core

rc and the reaction degree atr. In the CRC model, the formed reaction products do

not play a role, since the reaction is surface controlled. In this paper, a hybrid system

is studied and for this system, the reaction product is relevant and therefore

considered here.

Fig. 2 shows a graphical representation of a particle with ash layer formation.

The model assumes that the reaction rate at any moment is given by its rate of

diffusion to the reaction surface. The volume including ash layer is:
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Ve ¼ Vc þ vðV0 � VcÞ: ð1Þ

Here v constitutes the volume increase ratio associated with the reaction (Ve/V0), V0

is the volume of the initial particle with radius r0, VC is the volume of the shrinking

core (with radius rc) and Ve is the volume of the particle including ash layer (with

radius re). Based on this volume relationship, the radius of varying particle including

ash layer can be derived:

r3e ¼ vr3o þ ð1� vÞr3c : ð2Þ

The reaction degree can be described based on the volume of the unreacted core

(Vc) and initial volume of the particle (V0). The equation for the reaction degree is:

a ¼ 1� Vc

V0

¼ 1� rc

r0

� �3

: ð3Þ

Here rc is the radius of the shrinking core and r0 the initial radius of the particle.

The transition point between the surface and diffusion controlled phase within the

reaction can be described by several parameters, such as time, reaction degree,

radius of shrinking core and product/ash layer thickness. Taking the layer thickness

Fig. 1 The relationship between basic rate factor, diffusion coefficient and transition point (ttr, rc,tr)
(modified from van Breugel)
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(dtr) and radius of the unreacted core (rc,tr) as a starting point, the corresponding

reaction degree at the transition point is:

atr ¼ 1� rc;tr

r0

� �3

: ð4Þ

Furthermore, the (external) radius of particle including product/ash layer at the

transition point can be described based either on volume increase ratio v or the

transition layer thickness (dtr);

re;tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr30 þ 1� vð Þr3c;tr

3

q
ð5Þ

re;tr ¼ rc;tr þ dtr: ð6Þ

The following ‘‘Chemical reaction controlled and ‘‘Diffusion controlled’’

sections address the chemical reaction controlled and diffusion controlled stage,

respectively, while ‘‘Hybrid model’’ section combines both stages to a single

(hybrid) model.

Chemical reaction controlled

The general equation [13, 16] for the chemical reaction controlled system, as also

presented in [12], is:

Fig. 2 Graphical representation of the ash diffusion system
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t

s1
¼ 1� rc

r0
¼ 1� 1� að Þ1=3 with s1 ¼

r0

k1
: ð7Þ

Here a is the reaction degree, t is the reaction time, s1 is the time needed for full

reaction (a = 1), k1 is the reaction rate constant and r0 is the initial radius of the

particle.

In ‘‘Introduction’’ section, the transition point was introduced. The time needed

for reaching the transition point ttr can be described using the chemical reaction

controlled model (Eq. 7) is:

ttr ¼ 1� rc;tr

r0

� �
� s1 ¼ 1� 1� atrð Þ1=3

� �
� s1: ð8Þ

One can notice that for atr = 1, ttr equals s1, which means that the conversion is

completely chemical reaction controlled.

Diffusion controlled

As a first step only the diffusion model is considered. The chemical reaction

controlled model assumes that the formed ash/product, if any, does not limit the

reaction speed. The formed ash/product, however in practice, can reduce the

reaction rate. The ash-layer model deals with this resistance to reaction. Šesták and

Berggren [28] mention two three-dimensional transport process models, namely the

Jander model [29] and the Ginstling and Brounshtein model [30]. The Jander model

assumes a spherical reactant surface and flat product layer, while the Ginstling-

Brounshtein model assumes a spherical reactant surface as well as spherical product

layer. Carter [31] points out that there are some major simplifications in the Jander

model. The Jander equation assumes a plane surface which is only valid when the

ratio of inner and outer radius of the ash layer is close to unity, so for small values of

a. Brown [32] points out that the Jander model cannot account for the decrease in

interfacial area between the reactant and the reaction product as reaction proceeds.

Considering these limitations of the Jander model, the model of Ginstling and

Brounshtein [30] is used in the present paper.

The equations of Ginsling and Brounshtein [30] have also been used by

Levenspiel [13, 15] to describe the reaction of a shrinking core with an ash layer,

where the total size of the particle (reacted and unreacted) is constant. The model

assumes that the reaction rate at any moment in time is given by its rate of diffusion

to the reaction surface:

� dVc

dt
¼ AeQ: ð9Þ

Here Q is the flux of Ae through the exterior surface of a particle. The rate of

diffusion depends on the effective diffusion coefficient (De) and the concentration

(Ce) present on the reaction surface:
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Q ¼ De

dC

dr
: ð10Þ

Combining Eqs. 5, 9 and 10, using Ae = 4pre
2 and integrating by applying C = 0

for rc, C = Ce for r = re leads to:

� dVc

dt
¼ 4pDeCe rc � v � r30 þ ð1� vÞ � r3c

� �1=3� �
: ð11Þ

Using Vc = 4/3prc
3, separating of the variables rc and t leads to:

drc

dt
¼

DeCe rc � v � r30 þ ð1� vÞ � r3c
� �1=3� �

r2c
: ð12Þ

Integrating Eq. 12 and applying rc(t = 0) = r0, and combining with Eq. 3 leads

to:

k2t

r20
¼ v� vþ 1� vð Þ 1� að Þð Þ2=3

v� 1
� 1� að Þ2=3: ð13Þ

Here a is the reaction degree and k2 is the kinetic constant. The kinetic parameter k2
describes the effective diffusion coefficient (De) and the concentration of the

solution at the reaction surface (Ce). For the complete conversion of a particle,

rc = 0, the total reaction time (s2) required equals:

s2 ¼
v� v2=3

v� 1
� r

2
0

k2
: ð14Þ

So, the dimensionless equation for this system is:

t

s2
¼ v� vþ 1� vð Þ 1� að Þð Þ2=3

v� 1
� 1� að Þ2=3

 !
� v� 1

v� v2=3

	 

: ð15Þ

This equation is also given by Szekely [16] and Ghoroi and Suresh [33] for the

diffusion controlled reaction of particles with changing size based on the work of

Carter [31]. In case of v = 1, Eq. 15, turns into the ash diffusion equation of

Levenspiel [13], using the L’Hôspital’s rule. This ash diffusion equation of

Levenspiel is:

3t

s2
¼ 1� 3 1� að Þ2=3þ2 1� að Þ: ð16Þ

Hybrid model

The model in the previous subsection is applicable when during the whole

conversion (i.e. 0 B a B 1), the diffusion control model is applicable. But in

cellular automata systems, the process starts with chemical reaction controlled, and
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after the formation of a layer, diffusion controlled kinetics prevails. So, for

0 B a B atr, CRC from ‘‘Chemical reaction controlled’’ section prevails and for

atr B a B 1, diffusion (‘‘Diffusion controlled’’ section) is governing the reaction

speed. The time corresponding to atr is called ttr.

Fig. 1 shows a graphical representation of the studied system. As one can notice,

the total reaction time s3 consists of two parts. The first part of the reaction is

chemical reaction controlled. This part is valid until a transition thickness dtr is
reached. The time required for this stage is given by Eq. 8.

The second part of the reaction is diffusion controlled. To determine the time

needed for this phase, Eq. 12 needs to be integrated with applying rc = rc,tr for

t = ttr. After integration and simplification, this leads to:

t � ttrð Þ k2
r20

¼ � vþ 1� vð Þ 1� að Þð Þ2=3

v� 1
� 1� að Þ2=3þ vþ 1� vð Þ 1� atrð Þð Þ2=3

v� 1

þ 1� atrð Þ2=3:
ð17Þ

One can notice the resemblance of Eqs. 7–13. In the case of atr = 0 and ttr = 0,

Eq. 17 transforms into Eq. 13. In fact, Eq. 17 is the difference between the results of

Eq. 13 for ttr and t. For v = 1, Eq. 17 becomes:

t � ttrð Þ k2
r20

¼ 3 1� atrð Þ2=3�3 1� að Þ2=3þ2 atr � að Þ: ð18Þ

Using Eq. 8 for the transition time and substituting a = 1 into Eq. 17 for the

diffusion controlled stage, the time s3 needed for full reaction (a = 1) is:

s3 ¼
�v2=3 þ vþ 1� vð Þ 1� atrð Þð Þ2=3þ v� 1ð Þ 1� atrð Þ2=3

v� v2=3
s2

þ 1� 1� atrð Þ1=3
� �

s1: ð19Þ

For atr = 0 (i.e. the system is fully diffusion controlled), s3 is equal to s2 and for

atr = 1 (i.e. the system is complete chemical reaction controlled), s3 is equal to s1, as
would be expected.

In the case of v = 1 and using the L’Hôspital’s rule, Eq. 19 can be rewritten as:

s3 ¼ 3 1� atrð Þ2=3�2 1� atrð Þ
� �

s2 þ 1� 1� atrð Þ1=3
� �

s1: ð20Þ

For atr = 0 (i.e. the system is fully diffusion controlled), s3 is equal to 3/s2 and
for atr = 1, s3 is equal to s1.
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Cellular automata approach

The background of cellular automata has been illustrated in [12, 14]. Cellular

automata can be best described as a tool for the simple mathematical idealizations of

natural systems [34]. In this article, a cellular automaton is used to represent a

system in which a particle reacts and a reaction product is formed. Furthermore, a

direct unique relation between the ash diffusion model of the previous section and a

CA approach is sought. As a tool for the cellular automata simulations, a modified

version of CEMHYD3D [35–38] is used in this study. In [12], a general and original

linear relation between the cellular automata parameters and chemical reaction

model parameters were established for the case in which reaction products are

absent in the system. In the present paper, a system with the formation of reaction

product layer (ash layer) through which diffusion needs to take place, is studied.

Therefore, the diffusion resistance of the product/ash layer needs to be taken into

account. In the case of no reaction product formed on the shrinking core [12], the

reaction probability remains the same for all a (i.e. P1 = P0, with P0 the basic

(unmodified) dissolution probability). But in case of the presence of an ash layer, the

reaction probability is depending on the layer thickness (d) and reads analogue to

[37, 39]:

P2 ¼ P1

dtr
d
: ð21Þ

In this equation, the transition thickness (dtr) is also introduced, since first an ash

layer needs to be formed. Up to the moment a pre-determined layer thickness (dtr) is
reached, the reaction is chemical reaction controlled and after this point the reaction

is considered to be diffusion controlled. Fig. 1 shows the principle of this hybrid

system. In this hybrid system, the system is reaction controlled until an ash layer of

minimal one voxel is formed. This is inherent to the cellular automata approach, in

which the reaction is simulated using discrete voxels. In the cellular automata

approach, it is possible to use layer thickness of more one voxel, but layer thickness

smaller than unity is impossible due to discrete manner of the cellular automata

approach. Besides the discrete case, one can also derive the corresponding radius of

the unreacted core for the continuous case by solving Eqs. 5 and 6. The combination

of these equations leads to the following implicit equation:

rc;tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr30 þ 1� vð Þr3c;tr

3

q
� dtr: ð22Þ

The value for rc,tr can be approached using the following equation:

rc;tr ¼ r0 �
dtr
v
: ð23Þ

The corresponding reaction degree (atr) for an approximated radius is:
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atr ¼ 1� 1� dtr
vr0

� �3

: ð24Þ

For the discrete case, as the case in the cellular automata models, the formed

layer needs to equal an integer and atr is in general higher than that of the

continuous case (Fig. 3).

Simulations results

In [12], the reaction controlled system, in which the presence of the reacted/

dissolved voxels is not relevant, was studied. For the (ash) diffusion controlled

model, however, the reaction products on the surface of reactive material are

relevant and need to be included. The system uses the diffusion layer reaction

mechanism as described in the previous section with dtr = 1 lm.

Similarly to the previous analysis of the reaction controlled system [12], a series

of 165 simulations has been performed with reaction probabilities in the range of

0.003–0.099 and digitized particle sizes d of 7, 13, 21, 25 and 35, respectively. The

particle shape has been modified in the same way as in [40]. This modification

improves sphericity and roundness of the digitized particles, which approaches a

spherical shape better. Based on the results, a linear relation between the presented

ash layer model and cycle number is determined for each simulation.

Chemical reaction controlled stage

In the first stage of the reaction, the system is chemical reaction controlled. In our

previous paper [12], a linear relation between cycles, particle size and reaction

probability is derived. This relation is:

Fig. 3 Transition reaction degree for the transition of chemical reaction controlled to diffusion controlled
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t ¼ b1
P0

k1
� r0
rp

� C � 2ð Þ: ð25Þ

Here b1 is the relation constant for CRC, rp the radius of particle size in voxels

and P0 the dissolution probability. Using the fitting toolbox of Matlab�, the b1 are
determined based on the linear regression between time (Eq. 7) and cycles ((C-

2)�P0/rp). For this regression analysis, the values for r0, rp, P0, k1 are the input

variables, corresponding to the different simulations. This relation is tested here for

0.05\ a\ atr with atr being the transition reaction degree as defined in the

previous section. For the v C 1 system, a value of 1.31 was found (Table 1), while

for v = 0, a value of 1.36 was obtained for the same range.

Constant particle size

Fig. 4 shows the reaction of a 35 particle using the new reaction routine described in

[12, 14]. One can notice from this figure that the particle indeed remains the same

and that no cavity is formed between the ash/product-layer and the (unreacted)

shrinking core.

In the ideal situation, the simulation curves follow the diffusion controlled model

from cycle Ctr onwards. In [12], the cellular automata cycles were correlated to the

chemical reaction controlled model based on the reaction degree. Here the same

approach is followed for the diffusion controlled model from Ctr and atr onwards.
Therefore, the relation equation on Eq. 16 is:

3 1� atrð Þ2=3�3 1� að Þ2=3þ2 atr � að Þ ¼ b2 C � Ctrð ÞP0

r2p
: ð26Þ

Here b2 is the relation constant, Ctr is the cycle in which the (discrete) transition

reaction degree atr is reached, rp the radius of particle size in voxels and P0 the

reaction probability. Table 2a shows the results based on the ash layer model of

Levenspiel (Eq. 16) for the reaction degree between atr and 0.9 for d = 13, 21, 25

Table 1 The derived values of

b1 for d = 7, 13, 21, 25 and 35

and different values of v for the

chemical reaction controlled

phase up to atr

v b1

0 1.360

1 1.314

1.05 1.313

1.35 1.314

1.7 1.310

2.5 1.313

3.4 1.313

4.25 1.315

5.1 1.315

5.95 1.314

6.8 1.314
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and 35. During the determination of the relation, a coefficient of variation of 0.02

was found, which is half of the coefficient of variation found in [12] for the

chemical reaction controlled model for shrinking particles (0.04).

Table 2b shows the results of determining the b2 of 10 simulations with the same

initial microstructure containing a 35 particles with two P0’s, namely 0.003 and

0.0217. The coefficient of variation as presented in Table 2b is below 0.011. This

value is an indication for the intrinsic variation of the CEMHYD3D model. The

variation of a single particle size within all models is comparable to this intrinsic

variation and therefore this variation is intrinsic to the chosen simulation method

(e.g. cellular automata).

Cycle 1 Cycle 1000 

Cycle 200 Cycle 3000 

Cycle 4000 Cycle 4798 

Fig. 4 Example of dissoluting particle and the developing shape during its reaction in case of v = 1 (in
red the unreacted core and in blue the formed reaction product)
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Fig. 5 shows the surface area of the (shrinking) core during the reaction

compared to the theoretical surface area as derived in [12]. One can notice that the

surface area of simulation is slightly higher than the theoretical curve, and that the

difference between the curves is comparable to [12].

Table 2 (a) Statistical information on the derived values of b for d = 7, 13, 21, 25 and 35 and

P0 = 0.003–0.099 in the constant particle size case, (b) statistical information on derived values of b for

10 simulations with d = 35 and P0 = 0.003 and d = 35 and P0 = 0.021

b

(a)

Mean 4.817

Median 4.800

SD 0.094

Variation 0.009

Coefficient of variation 0.020

P0 = 0.003 P0 = 0.0217

(b)

Mean 4.741 4.732

Median 4.725 4.734

SD 0.053 0.040

Variation 0.003 0.002

Coefficient of variation 0.011 0.009

Fig. 5 The surface area of the shrinking core during reaction in CEMHYD3D compared to the theoretical
surface according to the ash diffusion controlled model of Levenspiel [13], given as Eq. 9 in [12]
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Varying particle size case

In the previous section, a system with v = 1 was evaluated. In this case, the reactant

has transformed into the product without any change in the volume of the solid

during the process. In practice, often a change in volume during reaction occurs

(v = 1). In this section, a system with v = 1.7 is used as an example, which means

that the volume of the product (Ve - Vc) is 1.7 times the reacted volume of the

reactant (V0 - Vc) (Fig. 1). In order to cope with this volume change within

CEMHYD3D, a modification was needed. In the original version of CEMHYD3D

of Bentz [36], the additional product formed during the reaction was randomly

distributed through the microstructure, although with a slight favor for placing in

contact with a solid. Fig. 6 shows the reaction of a 35 particle including the

formation of additional product. One can notice from Fig. 6 that some voxels appear

Cycle 1 Cycle 1500 

Cycle 3000 Cycle 4500 

Cycle 6000 Cycle 6449 

Fig. 6 Example of dissoluting particle and the developing shape during its reaction in case of v = 1.7 (in
red the unreacted core and in blue the formed reaction product)
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to be unconnected to the core, but in fact they are connected to the particle. This

appearance of loose voxels is caused by the chosen representation which is cut-

through with a thickness of only 1 voxel.

For the testing of the general reaction equations, it is necessary that the additional

product voxels are placed on the surface of the ‘digitized sphere’. Therefore, a

routine is added, which searches a spot on the surface suitable placement/precip-

itation of this additional product voxel. Fig. 6 shows the slice through of a

dissolving particle, with the unreacted core in red and the formed reaction product in

blue. One can notice that the spherical shape of the reactant and the hydration

product is maintained during the reaction.

Analogously to the analysis in the previous section, the current section deals with

the analysis of the varying particle size case (v = 1.7). The particles in these

systems grow due to the fact that more volume of product is formed than the volume

of reactant that is disappeared.

Table 3a shows the results of the model with a single relation constant b2 for 132
simulation runs (with each curve the R2 C 0.994). It can be noticed from this

table that the coefficient of variation is around 1.5%. The coefficient of variation,

when performing ten simulations with the same initial microstructure is around

1.0% (Table 3b). This value has been determined by determining the b2-value for

10 simulations starting with the same initial microstructure.

Table 4 and Fig. 7 show the results of the same analysis for more ash/reactant

ratios (v). As one can notice from Fig. 7, b2 slightly depends on v. Based on the

present theory, a constant value for b2 would be expected. Nevertheless, the

deviation of b2 is 10.7% for the relevant range of v between 1 and 2.5, so with mean

b2 = 5.1 the maximum error is about 5%. Larger values of v are hardly found in

Table 3 (a) Statistical information on the derived values of b for d = 7, 13, 21, 25 and 35 and

P0 = 0.003–0.099 in the varying particle size case, (b) statistical information on derived values of b for 10

simulations with d = 35 and P0 = 0.003 and d = 35 and P0 = 0.021

b

(a)

Mean 5.171

Median 5.175

SD 0.079

Variation 0.006

Coefficient of variation 0.015

P0 = 0.003 P0 = 0.217

(b)

Mean 5.121 5.170

Median 5.121 5.171

SD 0.051 0.046

Variation 0.003 0.002

Coefficient of variation 0.010 0.009
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practice. For cement reactions, for instance, the minimum and maximum volume

expansions of the reaction of the four (main) cement clinkers phases with water are

1.69 and 2.27.

Coupling cellular automata and reaction kinetics

‘‘Constant particle size’’ and ‘‘Varying particle size case’’ sections presented the

relation between cycles and the theoretical model from the transition point onwards.

In this section, a relation between time and cycles is derived. Before the transition

point, the relation only depends on the chemical reaction model and the relation is

equal to the unique relation derived in the previous paper [12]. From the transition

point onwards, it can be assumed that the reaction time is the summation of the time

Fig. 7 A graphical representation of the derived values of b2 for different values of v in the diffusion
controlled phase and marked area representing the relevant range of v for the reaction of the four main
cement clinker phases with water

Table 4 The derived values of

b2 for different values of the
volume increase ratio v in the

diffusion controlled phase

v b2

1 4.817

1.05 4.848

1.35 5.018

1.7 5.171

2.5 5.360

3.4 5.480

4.25 5.552

5.1 5.585

5.95 5.627

6.8 5.638
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needed to reach the transition point using the chemical reaction controlled model

and time needed to reach a certain reaction degree from the transition point

onwards.

The time to reach a certain a during the diffusion controlled phase from the

transition point (ttr) onwards can be calculated using Eq. 17. Analogously to [12]

instead of time, this point can also be described based on cycles and reads;

C � Ctrð Þ k2
r20

¼ � vþ 1� vð Þ 1� að Þð Þ2=3

v� 1
� 1� að Þ2=3þ vþ 1� vð Þ 1� atrð Þð Þ2=3

v� 1

þ 1� atrð Þ2=3:
ð27Þ

Based on this the following relation for the diffusion controlled phase can be

derived

t � ttr ¼ b2 C � Ctrð ÞP0

k2

r20
r2p
: ð28Þ

Here b2 is the fitting parameter for the diffusion controlled phase. The time

needed to reach the transition point (ttr) according to [12] and for C = Ctr is:

ttr ¼ b1 Ctr � 2ð ÞP0

k1

r0
rp

ð29Þ

Combining Eqs. 28 and 29, the total time becomes:

t ¼ b1 Ctr � 2ð ÞP0

k1

r0
rp

þ b2 C � Ctrð ÞP0

k2

r20
r2p
: ð30Þ

Here b1 and b2 are the relation constants for the chemical reaction controlled and

diffusion controlled systems, k1 and k2 are the kinetic parameters of the chemical

reaction controlled and diffusion controlled systems, respectively, rp is the radius of

the particle in voxels, r0 is the initial size of a reacting particle and P0 is the reaction

probability according to cellular automata model.

Similarly to [12], a unique relation (Eq. 30) is established here between cellular

automata (rp, C, P0) and chemical kinetic (r0, t, k1 k2) properties using the relation

constants b 1 and b2 for chemical reaction controlled and diffusion controlled

reactions, respectively. This enables the direct coupling of the cycles from the

cellular automata model to time, which is basis for the description of reaction in the

general chemical kinetic models. During the current research b1 of 1.31 was found

for v C 1 and a value of 5.09 with deviation of 5% can be applied for b2 in the

relevant v range of 1–2.5.

123

488 Reaction Kinetics, Mechanisms and Catalysis (2018) 125:471–492



Conclusions

Cellular automata is a powerful technique to model chemical reactions/systems

[1–9, 12, 14], providing it with the ability to simulated comprehensive chemical

reactions. As pointed out by Kar et al. [41], cellular automata is a stochastic

approach in which a natural event can be successfully simulated. Cellular automata

leads to an accurate mathematical model which can clarify the role of individual

components within processes and generate specific, testable hypotheses and

predictions. To be able to do this, cellular automata assumes that time and space

are discrete. Therefore the challenge with cellular automata systems is to establish a

direct link between time and cycles, which is the ‘time-based’ parameter in cellular

automata. Often a square root between cycles and time is used. This approach is also

used by Bentz [36], based on the Knudsen Approach [42]. This challenge was

addressed by Van der Weeën et al. [4] by presuming a time step of 0.01 s, when

coupling a cellular automata model to a partial differential equations based model.

This paper intends to provide a unique direct relation between time and cycles for

diffusion controlled systems as earlier done for surface controlled reactions [12],

rather than the general approach given by Knudsen. This is of interest, since in many

reactions a layer of reaction products is formed on the unreacted core, rendering the

reaction diffusion rather than surface controlled. The studied system starts as a

surface controlled system, which is inherent for the cellular automata approach,

until a certain reaction product layer thickness is reached. From this point of time,

the diffusion controlled mechanism can be the rate determining reaction

mechanism.

The cellular automata approach is applied to different ash layer models for

particles with constant (v = 1) and growing/shrinking (v = 1) particle sizes.

Simulations are performed for particle sizes 13, 21, 25 and 35 and reaction

probabilities ranging from 0.003 to 0.099 with a step of 0.003. It is shown, from the

results of these simulations, that the cellular automata approach can adequately

describe both cases for a reaction degree larger than the transfer reaction degree (atr)
using diffusion (ash layer) controlled model. The threshold reaction degree is the

reaction degree at which a diffusion layer of 1 voxel is formed. A hybrid reaction

model based on chemical reaction controlled and (ash) diffusion controlled model

has been introduced in order to address the existence of the transition reaction

degree.

Here, the cellular automata parameters are mathematically related to the kinetic

parameters of the CRC and ash diffusion model, for which two general constants, b1
and b2, respectively, are introduced. This is achieved by computing the mathemat-

ical relation between the cellular automata simulations and the chemical reaction

models for 132 different simulations with varying particle sizes and reaction

probabilities. A value of 1.31 was found for the relation constant b1, while a relation
between the product/reactant ratio v and the relation constant (b2) is found for v C 1

from threshold reaction degree onwards. The coefficient of variation for 132

simulations is around 2%. It should be noticed that typical cellular automata

simulations have already an intrinsic coefficient of variation of 1% owing to their
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statistical nature, since it depends on probabilities for transitions. Furthermore, for

the relevant range of v, an average b2-value of 5.09 can be applied. The minimum

and maximum value are respectively minus and plus 5%.

This relation is tested from the threshold reaction degree atr (so the transition

point between chemical reaction and diffusion controlled) onwards. Since the full

conversion time is of interest, a hybrid model is introduced here, which combines

the chemical reaction controlled and diffusion controlled phase. Using this hybrid

model, a unique relation between time and cycles based on the parameters of

cellular automata (particle size and reaction probability) and chemical models can

be derived (Eq. 30).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

1. Chopard B, Droz M (2005) Cellular automata modeling of physical systems. Cambridge University

Press, Cambridge

2. Kier LB, Seybold PG, Cheng C-K (2005) Cellular automata modeling of chemical systems: a

textbook and laboratory manual. Springer, Dordrecht

3. Fraser SJ (1987) Discrete models of growth and dynamical percolation in chemistry. J Comput Chem

8:428–435. https://doi.org/10.1002/jcc.540080420
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