
hf. J. Heal Mass Transfer. Vol. 32, No. 4, pp. 65%63, 1989 
Printed in Great Britain 

0017-9310/89s3.00+0.00 
0 1989 Pergamon Press plc 

Film condensation on non-isothermal vertical 
plates 

H. J. H. BROUWERS 
Akzo Research Laboratories, Fibres and Polymers Division, Department of 

Mechanical Research, Velperweg 76, 6824 BM Arnhem, The Netherlands 

(Received 6 November 1987 and infinalform I July 1988) 

Abstract-An analytical study is presented of the condensation of a pure saturated vapour on a cooled 
channel plate, including the interaction between the cooling liquid, the condensate and the vapour. The 
governing equations of co-, counter- and cross-current condensation are derived, set dimensionless and 
solved in closed form. The resulting implicit expressions are evaluated numerically by iteration. In this way 
results for condensation heat transfer are obtained for a broad range of the characteristic dimensionless 
numbers of the process: the McAdam number and the number of transfer units. Furthermore, using 
asymptotic methods, a simple approximate expression is derived that is suitable for engineering end 

purposes. 

INTRODUCTION 

IN THE recently developed plastic gas-liquid heat ex- 
changers channel plates are applied as heat transfer sur- 
faces. These plates are made of polyvinylidene fluoride 
(PVDF) by spinning or extrusion. In these plates small 
channels have been provided through which there 
flows a cooling liquid, e.g. water. Because the walls of 
the channels are very thin, the heat transfer coefficient 
is very good compared with that ofconventional metal 
heat exchangers, although the thermal conductivity of 
PVDF is only 0.19 W m-’ K-’ (Fig. 1). 

As a result of the application of this polymer, the 
maximum operational temperature is 150°C. The heat 
exchangers are suited for condensing vapours with a 
dew point below this threshold temperature, especially 
corrosive and poisonous vapours, such as toluene, 
benzene, chloroethane, several acids and, of course, 
steam. 

Condensation of pure saturated vapours on vertical 
flat plates has often been examined in the past. Several 
extensions and improvements have been proposed to 
the original solution of Nusselt [l]. Extensions include 
inertia [2], heat capacity of the condensate [2, 31 and 
drag of the vapour [4, 51. 

However, the condensation problems analysed thus 
far have-to the author’s knowledge-been limited to 
isothermal plates. Temperature rises of the cooling 
liquid as a result of liberated latent heat are neglected. 
Such temperature rises and their interaction with the 
condensation process are considered to be important 
and typical of channel plates. 

In this paper condensation on channel plates is 
studied in some detail. Taken into account are con- 
duction and convection in the plate, heat transfer in 
the condensate, and their interactions. 

Three types of configuration are examined, namely 
the flow of the condensate under the action of gravity 

in the direction of the liquid flow, called co-current, 
in the opposite direction, called counter-current and 
perpendicular to the liquid flow, called cross-current 
condensation. It is assumed that both the liquid and 
condensate flow are unmixed and that the condensate 
forms a laminar, non-rippling film on the plate. The 
physical properties of the liquid and the condensate 
are assumed to be constant. 

The governing equations of the processes will be 
derived, set dimensionless, and analytical solutions of 
these non-linear equations will be provided. It is 
shown that the processes are governed by two dimen- 
sionless numbers : the McAdam number Ad, and the 
number of transfer units NTU. Based on the analytical 
solutions and an asymptotic analysis, there is derived 
an approximate result that is compact and accurate 
for most practical values of the dimensionless num- 
bers characterizing the processes. 

FORMULATION OF BASIC EQUATIONS 

First, the equations of the cross-current con- 
densation process will be mathematically formulated, 
because this is the most general case. The equations 
of the other situations can easily be derived from the 
equations of this process. 

The liquid flowing through the channels has an inlet 
temperature Tin, which is lower than the saturation 
temperature T,,, of the vapour (Fig. 2). For the chan- 
nel plate, an energy balance for an element dxdz 
involves conduction and convection heat flows within 
the plate and an inflow of heat from the condensate. 
This energy balance can be written as 

y g = h,(T,,, - T) 

where h, is defined as the overall heat transfer co- 
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NOMENCLATURE 

a wall thickness [m] Q dimensionless heat flux, defined by 
Ad McAdam number, defined by equation equation (63) 

(33) or (49) T temperature of the liquid [K] 
B plate width [m] T,, entry temperature of the liquid [K] 

2, 
specific heat [J kg-’ K-‘1 T O”t take-off temperature of the liquid [K] 
hydraulic diameter of a channel [m] T sat saturation temperature of the vapour [K] 

iC 

acceleration due to gravity [m SC’] U component of velocity in the x-direction 
heat transfer coefficient of the [m s-‘1 
condensate, defined by equation (3) V component of velocity in the y-direction 
[Wm-‘K-‘] [m s-‘1 

h, mean heat transfer coefficient of the WI liquid mass flow [kg s- ‘1 
liquid, defined by equation (5) x, y, z coordinates [m] 
[wm-‘K-l] X xIB 

h, heat transfer coefficient of the channel Z z/L. 

walls, defined by equation (4) 
[Wmm2K-‘] 

h PI heat transfer coefficient of the plate, Greek symbols 
defined by equation (30) [Wm-‘Km’] 6 film thickness of the condensate [m] 

h, total heat transfer coefficient, defined by A h,, lh, 
equation (2) [W me2 K- ‘1 E perturbation quantity, defined by 

Hfg latent heat of condensation [J kg-‘] equations (67) and (73) 
k thermal conductivity [W m-’ K-‘1 dynamic viscosity [N mm’ sm ‘1 

KU Kutateladze number, c,,( T,,, - T,,)/H,, : (Tw- T)/(Ts,t- Tin) 
L plate length [m] 0 (T,,,- T&U,,,- T,,) 
ti local mass flux [kg me2 SC’] Gout mean dimensionless temperature, 
ti total mass flux [kg s- ‘1 defined by equation (54) 
NTU number of transfer units, defined by P specific density [kgmm3]. 

equation (32) 
Nu mean Nusselt number, h&,/k, 

P dimensionless parameter defined by Subscripts 
equation (38) condensate 

Pr Prandtl number, q,c,,lk, r: liquid 

4 dimensionless parameter defined by P plate wall 
equation (46) V vapour. 

efficient of the condensate and the plate, B the plate 
width, w, the liquid mass flow, T(x, y) the temperature 
of the liquid and cp, the isobaric specific heat of the 
liquid. The heat transfer coefficient h, consists of three 
parts 

(2) 

The heat transfer coefficient h, of the condensate is a 
function of both x and z 

FIG. 1. Channel plate (sizes in mm). 

where k, is the thermal conductivity of the condensate 
and 6(x, z) the film thickness. 

The contribution of subcooling of the condensate 
is neglected because the Kutateladze number Ku of 
the relevant condensates is small. In refs. [2, 31 it 
has been demonstrated that for small Kutateladze 
numbers convection plays a secondary role because 
the film is so thin. The heat transfer coefficient h, in 

FIG. 2. Cross-current condensation process. 
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equation (2) stands for the conduction through the 
walls of the plate 

where k, is the thermal conductivity of the plate 
material and a the wall thickness. The forced con- 
vection heat transfer coefficient h, in equation (2) takes 
the convective heat transfer in the channels into 
account 

2Nu k, 
h, = 7 

h 

where k, is the thermal conductivity of the liquid and 
D,, the hydraulic diameter of the square channel, 
defined as four times the cross-sectional area divided 
by the perimeter. The Nusselt number Nu depends on 
z because of hydraulic and thermal entry effects. In 
heat transfer analysis one usually applies the flow 
length average Nusselt number. Because of the small 
geometry of plastic plates, the liquid flow remains in 
the laminar flow regime. Average laminar flow Nusselt 
numbers are well documented in ref. [6]. The inter- 
mediate walls in the plate separate the liquid flow in 
the various channels. As a result of the poor thermal 
conductivity of plastic, these intermediate walls are 
close to adiabatic. The pertaining Nusselt number for 
this heat transfer situation should be used. For metal 
plates, with good thermal conductivity properties, 
these intermediate walls act as extra heat transfer sur- 
faces. The Nusselt number of four heated walls should 
be taken, multiplied by two to incorporate the dou- 
bled effective heat transfer surface. In equations (3)- 
(5) the factor two reckons with the presence of a 
condensate film on both sides of the plate. The bound- 
ary condition from equation (1) is 

T(x,z = 0) = T,,. (6) 

In order to obtain an equation describing 6(x, z) atten- 
tion is paid to the condensate film. 

In the momentum equation in the x-direction the 
inertia terms can be neglected, in ref. [2] it has been 
demonstrated that for Prandtl numbers Pr > 1 these 
terms may be neglected. The buoyancy force exerted 
by the vapour on the film can also be neglected, 
because usually pv/p, is small. The momentum equa- 
tion in the x-direction is 

where qC and pc stand for the viscosity and the density 
of the condensate, respectively. The boundary con- 
ditions on u, are 

24& = 0) = 0 (8) 

In refs. [4, 5] it has been demonstrated that for small 

“MT 32:4-c 

I _ 

FIG. 3. Counter-current condensation process. 

Kutateladze numbers the drag of the vapour on the 
film can be neglected, so the zero shear boundary 
condition is appropriate. Integration of equation (7) 
with respect to y and the application of equations (8) 
and (9) yields 

(10) 

Using the equation of conservation of mass, the vel- 
ocity u,(x, y, z) perpendicular to the plate can be deter- 
mined as 

ao, _ -9h as -- 
aY rtc ( ) Yax (11) 

subject to the boundary condition 

oc(y = 0) = 0. (12) 

By integration of equation (11) with respect to y and 
application of equation (12) one finds that 

--9Pc 2 as 
%(X,Y,Z) = - 2q Yax c 

(13) 

The amount of condensate ti passing through an in& 
nite small area element dx at y = 6, at both sides of 
the plate, is governed by 

Substitution of equations (10) and (13) into equation 
(14) produces 

(15) 

The amount of liberated heat is the product of the 
mass flow into the film and the latent heat Hre: this 
liberated latent heat is equal to the heat transported 
to the liquid 

subject to the boundary condition 

6(x = 0) = 0. (17) 

The non-linear partial differential equations, equa- 
tions (1) and (16), coupled by equations (2) and (3), 
and boundary conditions (6) and (17) represent the 
governing equations of the cross-current conden- 
sation process. 

Next, the counter-current process is considered 
(Fig. 3). The equations describing this process can 
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easily be derived from the equations of the cross- 
current process as 

(18) 

Note that T and 6 are functions of z only. The bound- 
ary conditions become 

T(z = L) = T,, (20) 

and for equation (19) 

6(z = 0) = 0. (21) 

The equations describing the co-current process 
become (Fig. 4) 

and 

with boundary conditions 

and 

z-(z = 0) = r,, (24) 

6(z = 0) = 0. (25) 

In ref. [7] similar equations have been derived, and 
integrated numerically, for co- and counter-current 
condensation on a vertical circular tube. The analysis 
of these equations presented in the following sections 
can, therefore, right away be applied to both the afore- 
said processes and the pertaining equations. 

SOLUTIONS IN CLOSED FORM 

In this section the previously derived differential 
equations will be set dimensionless and solved in 
closed form. Dimensionless variables and numbers 
are introduced and defined, and it will be demon- 
strated that two numbers entirely characterize the 
processes. The three configurations will be treated in 
a sequence opposite to that employed in the previous 
section. 

FIG. 4. Co-current condensation process. 

Co-current process 
Equations (22) and (23), with application of equa- 

tions (2) and (3), can be written in dimensionless form 
as 

where 

g(l+A)+NTUO = 0 (26) 

d’(I+A)$l~,@=O (27) 

T,,, - T @=------ 
T,,, - T,, 

(28) 

Z=; (29) 

A=!!$ (30) 
c 

1 1 1 
-_= 

;;, 

k+k (31) 
1 

_iJ= 
(32) 

WI CpI 

Ad 
1 

= $iVcL(T=, - T,,) 

1 @m=H&d 

and with boundary conditions 

(33) 

O(Z = 0) = 1 (34) 

A(Z = 0) = 0. (35) 

The number of transfer units NTU is inversely pro- 
portional to the liquid capacity flow through the plate 
and Ad, is the ratio, to the fourth power, of the total 
heat transfer coefficient of the plate and the heat trans- 
fer coefficient of the condensate films. 

By adding equations (26) and (27), integrating with 
respect to Z, and applying equations (34) and (35), 
the following relation for A and 0 can be obtained : 

- NTU 
0 = =A3+l. (36) 

I 

Equation (36) is substituted in equation (26) and inte- 
grated to give 

3Ad, Ii3 
ln(p3+l) - NTU 

( >( 
3p-ln(p+l) 

+ { In (p’ -p + 1) - J3 arctan 
&-$1 

= -NTUZ+C, (37) 

where 

p = (O-1)“3. (38) 

By application of boundary condition (34) C, is 
obtained 
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(39) 

Values of O(Z = 1) = a,,,, and hence for the outlet 
temperature of the liquid, can be determined with 
equations (37)-(39) for any given NTU and Ad, by 
numerical iteration. Note that 1 -O,,, represents 
what is sometimes called the heat exchanger effec- 
tiveness. The maximum possible exit temperature, 
T(X = 1) = T,,, corresponds with O,,, = 0. 

Counter-current process 

Equations (18) and (19) of the counter-current pro- 
cess are set dimensionless by introducing equations 

(28)-(33) 

A’(1 +A) d& - Ad, 0 = 0 

and equations (20) and (21) become 

O(Z = 1) = 1 

A(Z = 0) = 0. 

(41) 

(42) 

(43) 

The number Ad, has the same physical meaning as 
Ad,, but this McAdam number contains B as the flow- 
off length. The equations become 

~(I+A)+NTUO = 0 (50) 

A2(1+A)&Ad20=0. (51) 

The boundary conditions of these coupled partial 
differential equations are 

O(X,Z=O)= 1 (52) 

A(X= 0,Z) = 0. (53) 

To solve the above non-linear problem the following 
procedure will be employed. Instead of 0(X, Z) the 
mean temperature o(X,Z) will be determined and 
defined as 

0(&Z) = 0(X, Z) dX. (54) 

Equations (40) and (41) are added, then integrated Combining equations (51), (53) and (54) yields 
with respect to Z, and equations (42) and (43) are 
applied, yielding o= &A’(1 + :A). (55) 

2 

NTU 

@ = 3Ad 
-A3+O(Z = 0). (44) 

I 
Integrating equation (50) with respect to X and sub- 
stitution of equation (54) 

Using equation (44) to eliminate A in equation (40) 
and integrating the resulting equation with respect to 
Z yields 

(56) 

$$O(Z = 0) 
l/3 

ln(q3+l) + > I 3q-ln (q+ 1) 

+:ln(q2-q+l)-J3arctan 

Combining equations (5 1) and (56) 

a6 
3AdldZ = -NTUA3 

and equations (55) and (57) produce 

(57) 

where 

= NTUZ+C, (45) 
(58) 

( 0 

> 

l/3 

q= @(Z=O)_1 . 
Integrating equation (58) 

(46) 

By substituting O(Z = 0) into equation (45) 

-ZNTU 
lnA+A= 3 + c3w. (59) 

c,+3 
3Ad, O(Z = 0) 

) 

“3 The integration function C,(X) can be determined by 

NTU 
(47) combination of equations (51) and (52) 

The unknown O(Z = 0) = O,,, can be evaluated for 
A3(Z = 0)(1 + :A(Z = 0)) = 3Ad2 X. (60) 

any NTU and Ad,, by numerical iteration of equations Equations (59) and (60) yield 

(45)-(47). 
A 

Cross-current process In A(Z = 0) ( > 
+ A-A(Z = 0) = -Nyz. (61) 

The cross-current equations, equations (1) and 
(16), are set dimensionless by equations (28)-(32) and 

For any NTU and Ad2 it is possible to determine 
0(X = 1, Z = 1) = O,,, by successive numerical iter- 

X=f ation of the analytically obtained equations (60) and 
(48) (61) , and relation (55). 
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FIG. 5. Variation of (T,,-T,,,)/(T,,,-T,,) with the FIG. 6. Variation of (T,,-T,,,)/(T,,,-Ti,) with the 
McAdam number for the co-current process. McAdam number for the counter-current process. 

Condensate production 

An important unknown is the amount of energy 
transferred and condensate produced per unit time. 
The simplest way to determine it is to employ an 
overall energy balance 

the exit temperatures of the co-current process, in 
particular for high NTU, but the difference is very 
small. It should be borne in mind that a higher O,,, 
implies a lower exit temperature, see equation (28). 

To calculate O,, for the cross-current case, equa- 
tions (60) and (61) are successively iterated after sub- 
stituting values for NTU = 2, 1,0.25 and 0.125, while 
Adz varies between 10m4 and 10’. In Fig. 7, O,,, is 
depicted against Adz. It is striking that Figs. 5-7 
almost coincide when Ad, = Ad*, that is when the 
length and width of the plate are equal. This implies 
that, if L = B, the orientation of the plate towards 
gravity is not important anymore. 

where A? represents the total mass flow of vapour to 
the film. This equation is set dimensionless by apply- 
ing equations (28) and (32) and 

Equation (62) becomes 

(63) 

Here, O,,, follows from equations (37)-(39) for the 
co-current process, from equations (45)-(47) for the 
counter-current process, and from equations (55), 
(60) and (61) for the cross-current process. 

NUMERICAL EVALUATION 

In the previous sections the governing equations for 
the three relevant process configurations were for- 
mulated, nondimensionalized and solved. Implicit 
algebraic relations were obtained between a,,,, the 
numbers NTU and Ad, or Adz. In this section results 
will be presented of numerical calculations of O,,,, 
performed on a Harris H500, for several values of 
NTU and Ad, or Adz, employing Newton’s iteration 
method. The iterations are stopped when the differ- 
ence between two successive steps has become smaller 
than 10P6. 

Values of Ad, ranging between 10m4 and lo2 are 
substituted into equations (37) and (45), while NTU 
is set equal to 2, 1, 0.25 and 0.125. These ranges 
of NTU and Ad, extend well beyond most current 
practical applications. In Figs. 5 and 6 the iterated 
O,,, is plotted against Ad,, for the co- and counter- 
current process, respectively. The exit temperatures of 
the counter-current process are somewhat higher than 

Furthermore, it can be concluded that for values of 
L/B > 1 (because of the application of channel plates 
this is often the case in plastic heat exchangers) cross- 
current condensation will lead to higher take-off tem- 
peratures of the liquid and higher condensate pro- 
ductions. This might be expected because the flow-off 
length of the condensate is shorter. 

For reasons of brevity the dimensionless variable 
Ad is introduced, Ad stands for Ad, for co- and coun- 
ter-current condensation, see equation (33), and for 
Adz for cross-current condensation, see equation (49). 

Next the exit temperatures for the three cases are 
calculated for Ad = 10d4, 10m2, 1 and lo2 while 

FIG. 7. Variation of (T,,,- T,,,)/(T,,,- T,,) with the 
McAdam number for the cross-current process. 
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FIG. 8. Variation of (T,,- T,,,)/(T,,- T,,) with NTU-’ for 
the co-, counter- and cross-current process and according to 

approximation (77). 

NTV ’ is varied between 0 and 10. In Fig. 8, O,,, is 
drawn vs NTU- ‘. Again it is obvious that for 
Ad, = Adz the exit temperatures are almost the same. 
It also shows that the exit temperatures tend to zero, 
for all Ad’s, when the liquid flow is nearly zero. Hence, 
the exit temperatures are equal to T,,,, and decrease 
when the liquid flow increases. 

Figure 8 confirms the expected trend with the exit 
temperatures for large Ad decreasing more strongly 
when the liquid flow increases. For large Ad the heat 
transfer resistance of the film is important when com- 
pared with that of the plate. So, when the liquid flow 
increases the thicker condensate film, for large Ad, 
will considerably affect the exit temperature. For small 
Ad, on the contrary, the thickness and heat transfer 
resistance of the condensate film are of minor import- 
ance, even when the liquid flow and condensate pro- 
duction increase. 

In Fig. 9 the’energy transfer Q is plotted against 
NTU-’ for the same values of Ad as is done in the 
previous figure, using equation (64). For small values 
of NTU-‘, increasing the liquid flow results in 
increasing condensation rates, although the exit tem- 
perature decreases. But a further increase of the flow, 
however, will not lead to any significant increase of 
the condensate production and energy transfer. Both 

0 I2 3 4 5 6 7 8 9 IO 

N&. a 
v. 

FIG. 9. Variation of Q with NTUI- ’ for the co-, counter- and 
cross-current process and according to equation (62) and 

approximation (77). 

the liquid flow and the plate area have to be increased 
to achieve higher condensate productions, see equa- 
tions (32), (63) and (64). 

ASYMPTOTIC ANALYSIS 

When attention is paid to Figs. 57, the supposition 
arises that there are limiting values of O,,, for large 
and small Ad’s This supposition is examined in some 
detail for the cross-current process, using asymptotic 
methods [8, 91. This analysis forms the basis of an 
approximate solution, which will be introduced at the 
end of this section. 

Small values of Ad imply a poor heat transfer 
coefficient of the plate and a good heat transfer 
coefficient of the condensate, see equations (33) and 
(49), whereas the inverse is true of large values of Ad. 
For intermediate Ad’s, the heat transfer coefficients 
of the plate and condensate film are of about the same 
magnitude. 

For small values of Ad*, which may occur when 
steam condenses on a plastic channel plate, the fol- 
lowing perturbation expansions can be applied : 

0(X, Z) = 0,(X, Z) + O(E) (65) 

W, Z) = @OK -3 + W) (66) 

where 

E = (3Adz)li3. (67) 

Substituting equations (65)-(67) into equations (50) 
and (51), equating the coefficients of equal power of 
E and solving the resulting equations for the zero- 
order terms yield 

a0 = emNTuz (68) 
A 

0 
= X1/3e-_(ZNTu)/3 (69) 

Applying equation (54) gives 

O,,, = 0,(X = 1, Z = 1) = eeNTO. (70) 

This zero-order solution suggests that for small Adz 
the heat transfer coefficient of the condensate film 
is negligibly large compared with the heat transfer 
coefficient h,, of the channel plate. The film on the 
plate can be considered to be isothermal and its pres- 
ence disregarded. 

For large values of Adz, e.g. when isopropanol or 
toluene condenses on a metal channel plate, the per- 
turbation expansions 

0(X, Z) = 0,(X, Z) +0(E) (71) 

A(XZ) = $oW)+W) (72) 

where 

(73) 

can be applied. Equations (71)-(73) are substituted 
into equations (50) and (51). Equating coefficients of 
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equal power of E and solving the resulting equations 
for the zero-order terms yield 

00 = 1 (74) 

(75) 

Application of equation (54) gives 

o,,, =0,(X= l,Z= 1) = 1. (76) 

The zero-order solutions (74) and (75) represent-in 
dimensionless form-the classical Nusselt type con- 
densation on an isothermal plate with temperature 

Ti:,,. 
An analogous reflection of equations (26) and (27) 

from the co-current process, and equations (40) and 
(41) from the counter-current process, for large and 
small Ad,, yields the same limiting values for O,,, and 
the same physical interpretations. 

The drawn lines, plotted in Figs. 8 and 9, represent 
an approximate solution of the broken lines, which 
are calculated by iteration of the closed-form 
solutions. The approximate function is based on the 
knowledge of the asymptotic behaviour of O,,, for 
large and small Ad’s, which is the same for the three 
processes, and Figs. 5-9 for intermediate Ad’s. This 
approximation of O,,, is an explicit function of NTU 

and Ad 

O,,, = (eCNTu- 1) 
ewTU)/2 

(0.55Ad)‘=+e@‘ru)/Z 
> 

+ ” 

(77) 

Equation (77) tends to the limiting values of O,,, 
for large and small Ad’s, and matches these values 
properly for intermediate Ad’s Furthermore, O,,, 
tends to zero when the liquid flow tends to zero, inde- 
pendent of Ad, and tends to unity when the liquid 
flow tends to infinity. These physical properties are 
both essential to the processes and also satisfied by 
equation (77). The amount of condensate production 
can be evaluated with equation (64). 

CONCLUDING REMARKS 6. 

Based on the assumption of Nusselt type con- 
densation, which has been found to be consistent in 
the past for most of the vapours applied, an analysis 
has been carried out of the condensation processes 
on non-isothermal plates, Three configurations have 
been examined and compared: namely co-current, 
counter-current and cross-current condensation. The 

7. 

8. 

9. 

governing equations have been derived, analysed and 
solved. The major results obtained are given below. 

(a) The process is governed by the McAdam num- 

ber and the number of transfer units. 
(b) For small liquid flows the exit temperature is 

equal to the saturation temperature, independent of 
Ad. 

(c) For large and small Ad’s, the asymptotic behav- 
iour of the three processes is equal. 

(d) For square plates (L = B), the take-off tem- 
peratures for all three situations are nearly the same, 
but if L > B the cross-current condensation will result 
in higher take-off temperatures and condensation 
rates. 

(e) For small values of Ad, the condensate film can 
be considered isothermal. 

(f) For large values of Ad, the plate can be con- 
sidered isothermal. 

(g) At certain mass flows, dependent on Ad, a fur- 
ther increase in liquid flow will not result in increasing 
condensation rates. Only an increase in both plate 
area and liquid flow will result in higher condensate 
productions. 

With knowledge of the asymptotic behaviour of the 
governing equations, there has been constructed an 
accurate and compact approximation function for the 
exit temperature, valid for all configurations of con- 
densation. 
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CONDENSATION EN FILM SUR DES PLAQUES VERTICALES NON ISOTHERMES 

R&m&On presente une etude analytique de la condensation d’une vapeur saturee pure sur la plaque 
froide dun canal, en incluant l’interaction entre le liquide refrigerant, le condensat et la vapeur. Ces 
equations pour la condensation sont posees dans le cas des courants paralleles ou croids, mises sous 
forme adimensionnelle et resolues analytiquement. Les expressions implicites obtenues sont evaluees 
numeriquement par iteration. Les resultats sur le transfert thermique par condensation sont obtenus pour 
un large domaine de variation des nombres sans dimension du phtnomtne : le nombre de McAdam et le 
nombre d’unites de transfert. En utilisant les mithodes asymptotiques, on obtient une expression approchee 

simple qui est utilisable pour les besoins de l’ingenieur. 

FILMKONDENSATION AN NICHT-ISOTHERMEN SENKRECHTEN PLATTEN 

Zusammenfassung-Es wird eine analytische Untersuchung der Kondensation eines reinen, geslttigten 
Dampfes an einer gekiihlten Platte vorgestelh, die such die Wechselwirkung zwischen Kiihlfliissigkeit, 
Kondensat und Dampf beinhaltet. Die Bilanzgleichungen fiir Kondensation im Gleich-, Gegen- und 
Kreuzstrom werden abgeleitet, dimensionslos gemacht und in geschlossener Form gel&t. Die resultierenden 
impliziten Ausdriicke werden durch Iteration numerisch geliist. Auf diese Weise erhalt man fib einen weiten 
Bereich der dimensionslosen Kennzahlen des Prozesses IMcAdams-Zahl und NTUl Eraebnisse fti den 
Warmeilbergang bei der Kondensation. Augerdem wird mit Hilfe asymptotischer Verfahren eine einfache 

Nlherungsbeziehung abgeleitet, die fur die praktische Anwendung gee&net ist. 

IIJIEHOtIHAII KOHflEHCAIJWII HA HEABOTEPMM9ECKHX BEPTHKAJIbHbIX 
I-IJIACTWHAX 

1QloCvrP~A~a~m~~uect~~ riccnenonana tcorinencatuia ~HCTOI-0 iracbrmemtoro napa ria oxnaz+tneaeoii 
ro@pripoeamtol rmacrrine c yuerohr e3anhfoneihzreris hte*ay oxnancnaromei4 minKombl0, KoHneHCaToM 

H IIapOM. BbmeneHht, IIpHBeneHbl I( 6e3pa3Me&JHOM)’ BHny H ~IlICHbl B 3aMKH)‘TOti @O&We Oll~J3eJlSUO- 

we ypasriemia ,aan c.ny¶aea rrarintemia napa no tranpaenerrmo, ~~OTHB A noneper TeqeHHK nneHKH 

KOHAeHCaTB. KOHe-iHbIe flaBHeHIlK PeUWOTCn hieTO/OM HTepWHH. nOJIJ’¶eHbl ll.BHHbIe AJIK TelUOl’le~- 

HOCB IlpH KOHJleHCillDiH B LUHpoKOM JWll’lZlOHe 6e3pZiMepHblX ‘4HCWI, XapaKTepH3)‘IOIUiX 3TOT I’lpOIWCC. 

nPH llOMOUUi aCHMllTOTH‘ECKHX MeTOJlOB BbIBWWHO IIIXXKhT IIpH6JIHxeHHOe BbIpaXeHHe, IIpHrOAHOe 

A.lUlHHX(eHePHbIXllpHJIOZiCeHH 


