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Abstract 
 
In this study two different types of nano-SiO2 were applied in self-compacting concrete 
(SCC), both having similar particle size distributions (PSD) but produced in two 
different processes (pyrogenic and colloidal precipitation). The influence of nano-SiO2 
on transport phenomena in SCC was investigated using the accelerated rapid chloride 
migration test at different ages (28 and 91 days) as well as the long-term diffusion test. 
The freeze-thaw resistance, expressed by the scaling factor (Sn), was also studied. 
Additionally, the microstructural characteristics of the hardened concretes were 
investigated by FEG-SEM and MIP analyses. The obtained results demonstrate that the 
addition of 3.8% bwoc of nano-SiO2 improves the SCC durability due to the refinement 
of the microstructure and the reduction in the connectivity of the pores. Additionally, a 
small difference in the reactivity of both types of applied nano-SiO2 additives was 
demonstrated. 
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Introduction 
 
Durability and sustainability of concrete infrastructure is becoming of critical 
importance for the construction industry. In this context, SCC is a type of concrete that 
has generated tremendous interest since its initial development in Japan by Okamura 
[1]. SCC was developed to obtain durable concrete structures. The aim was to develop a 
concrete with low yield, moderate viscosity and high resistance to segregation, which 
also can be cast on-site without compaction. The flow behavior of SCC is obtained by 
the use of superplasticizers, high amounts of fine particles and, in some cases, a 
viscosity modifying agent (added to reduce segregation and bleeding). Due to the high 
amount of fines, the pore structure of SCC differs from the pore structure of traditional 
concrete. However, the actual application of SCC might be somewhat risky due to the 
lack of knowledge concerning the actual durability of this material [2]. 
 One of the most referred to and used cementitious nano-materials is amorphous 
silica with a particle size in the nano-range, even though its application and effect in 
concrete has not been fully understood yet. It has been reported that nano-SiO2 addition 
increases the compressive strength and reduces the overall permeability of hardened 
concrete due to its pozzolanic properties, which are resulting in finer hydrated phases 
(C-S-H gel) and densified microstructure (nano-filler and anti-Ca(OH)2-leaching 
effects) [3-5]. These effects may enhance the durability of concrete elements and 
structures. There are different commercial types of nano-SiO2 additives available on the 
market, which are produced in different ways such as precipitation, pyrolysis, sol-gel 
and others [5]. The main characteristics of nano-SiO2, such as particle size distribution, 
specific density, specific surface area, pore structure, and reactivity (surface silanol 



 
 

groups), depend on the production method [3]. Despite the existence of several studies 
that describe the main properties and characteristics of concrete with nano-SiO2 
particles, most of them focus on the application of nano-SiO2 as an anti-bleeding and as 
a compressive strength enhancement additive [3-8].  In the literature, only a few reports 
on the effects of nano-SiO2 addition on the durability of SCC are available [9-11]. In 
addition, the difference in the reactivity of nano-SiO2 due to its production route has not 
been reported yet. 
 In this study two different types of nano-SiO2 were applied in SCC, both having 
similar particle size distributions but produced in two different processes (pyrogenic and 
colloidal precipitation). The influence of nano-SiO2 on chloride transport of SCC was 
investigated using the accelerated rapid chloride migration test at different ages (28 and 
91 days) as well as the long-term diffusion test. The freeze-thaw resistance, expressed 
by the scaling factor (Sn), was also studied. Additionally, the microstructural 
characteristics of the hardened concretes were investigated by FEG-SEM and MIP 
analyses. 
 
Materials and methods 
 
Materials and SCC mix design 
 
The Portland cement used in this study was CEM I 42.5N (ENCI, The Netherlands), as 
classified by [12]. This cement consists of at least 95% of Portland cement clinker; the 
initial setting time is 60 min, the water demand amounts to 38.9% by weight, and the 
compressive strength after 2 days is 21 ± 3 N/mm2 and 51 ± 4 N/mm2 at 28 days [12]. 
The coarse aggregates used were composed of broken granite in fractions 8-16 mm and 
2-8 mm. Two different sands were used: dredged river sand (0-4 mm) and microsand, 
composed mainly of natural sandstone waste (0-1 mm) collected during the crushing 
process of coarser fractions. Ground limestone powder was applied as a filler. Two 
different commercial nano-SiO2 additives were selected to produce two different SCC 
batches: one colloidal nano-SiO2 suspension and one fumed powder nano-SiO2. Both 
nano-SiO2 have similar PSDs and specific surface areas measured by BET (Brunauer-
Emmet-Teller method [13]), following the standard DIN-ISO 9277-2005 [14]. 
Furthermore, one superplasticizer (SP) of the 3rd generation, based on polycarboxylate 
ethers was added in order to adjust the workability of the mixes. A summary of the 
general characteristics of all materials used in this study is shown in Table 1 and their 
PSDs are depicted in Fig. 1. 
 For the composition of SCC mixes, the mix design concept described in [15] 
was used. This design concept makes use of an optimization algorithm described in [16] 
in order to compose the mix proportions of all solid ingredients of the concrete mix, 
following the theory of continuously graded granular mixtures. In the optimization 
process, the distribution modulus (q) of 0.25 was used together with the following 
constrains: cement content of 340 kg/m3, w/c ratio 0.45 and air content in the fresh mix 
of 1% by volume. The cement content and the w/c ratio were selected based on NEN-
EN 206-1 (2008) [17] for XS3 exposure class (exposition to chlorides originating from 
seawater). In addition, the flow class F7 (630-800 mm) of fresh SCC was selected as 
target, taking into account the Dutch recommendation BRL 1801 [18] for SCC. An 
example of the target curve and the composed SCC mix grading curve is shown in Fig. 



 
 

1. The final mix proportioning and characteristics of the reference mix without nano-
SiO2 and two mixes with nano-SiO2 addition are presented in Table 2.   
 
Table 1 
Properties of used materials 

Materials 
Specific 
density 
[g/cm3] 

BET 
[m2/g] pH 

Solid 
content 
[% w/w] 

Loss on 
ignition 
[L.O.I] 

Computed 
SSA 

[m2/m3] 
CEM I 42.5N 3.14 1 - - 2.8 1,699,093 
Colloidal nano-SiO2  1.40 50 9.5 50 - 46,110,081 
Powder nano-SiO2  2.15 56 5.0* - 0.5 48,175,461 
Limestone powder 2.71 - - - - 1,234,362 
Microsand (sandstone) 2.64 - - - - 193,514 
Sand 0-4 2.64 - - - - 14,251 
Granite 2-8 2.65 -  - - 1,740 
Granite 8-16 2.65 - - - - 515 
Superplasticizer 1.10 - 7.0 35 - - 

(*) 4% w/w in water 

Fig. 1 
PSD of materials used and 
target function based on 
[18] 

 
 
 
 
 
 
 
 
Table 2 
Composition and characteristics of the designed SCC mixes 

Materials 
Reference Colloidal 

nano-SiO2 
Powder 

nano-SiO2 
                                  [kg/m3] 

CEM I 42.5N 340.0 340.0 340.1 
Nano-SiO2  0.0 12.8 12.8 
Limestone powder 179.4 151.8 151.9 
Microsand (sandstone) 125.0 141.3 141.4 
Sand 0-4 624.3 617.9 618.0 
Granite 2-8 733.8 735.6 735.7 
Granite 8-16 274.7 274.2 274.3 
Water 153.0 153.0 153.0 
SP 3.4 6.5 6.5 
Air [% V]-estimated 1.0 1.0 1.0 
Density [g/cm3] 2.427 2.427 2.430 
w/c 0.45 0.45 0.45 



 
 

w/p 0.267 0.270 0.270 
Powder content [dm3/m3] 194.2 192.7 192.6 
Composed surface [m2/m3] 277,972 547,905 554,428 
SP content [g/m2] 0.0122 0.0119 0.0117 
SP content [% bwoc] 1.0 1.9 1.9 
Slump flow [mm] 690 - 720 664 - 701 685 - 720 
V-funnel time [s] 35.0 20.5 24.5 
Fresh density [g/cm3] 2.399 2.384 2.392 
Air content [%V]* 1.15 1.79 1.58 
Packing density [%]* 83.55 82.91 83.12 
Total Permeable porosity [%]ξ 12.07 12.45 12.48 
Depth of penetration of water under pressure [mm]+ 26 3 3 
28-days splitting tensile strength [MPa]Ѱ 4.51 4.92 5.48 
28-days compressive strength [MPa] Ѱ 78.2 87.7 78.5 
91-days compressive strength [MPa] Ѱ 83.5 92.2 91.0 

bwoc: Based on the weight of cement, * Calculated value, (ξ) Vacuum saturation technique, (+)Tested according to BS-EN 12390-8 
[19] after 28 days, (Ѱ)Tested according to BS-EN 12390-2 [20], BS-EN 12390-3 [21], BS-EN 12390-6 [22] 
 
Test methods 
 
For the rapid chloride migration test (RCM), three cores (diameter of 100 mm, height of 
150 mm) were drilled from three cubes for each mix. Two specimens for the RCM test 
were retrieved from each core, giving in total six test specimens (cylinders having a 
diameter of 100 mm and a height of 50 mm) for each mix. Three of these specimens 
were tested at the age of 28 days and the remaining three at the age of 91 days. One day 
prior to the RCM test, the specimens were pre-conditioned (vacuum-saturation with 
limewater). The RCM test was performed according to NT Build 492 [23] and the test 
set-up used is described in detail in [24]. The duration of the RCM test for all samples 
was 24 hours. After the test, the penetration depth of chlorides was measured on split 
samples by applying a colorimetric indicator for chlorides (0.1 M AgNO3 solution) and 
subsequently, the values of the chloride migration coefficients (DRCM) were calculated 
according to [23]. 
 Prior to the RCM test, the electrical resistance was measured on the same 
samples by using the so-called ‘two electrodes’ method [25]. For this, an AC test signal 
(f = 1 kHz) was applied between two stainless-steel electrodes and the resistance of the 
concrete sample placed between the electrodes was measured. Finally, the conductivity 
of the samples was calculated taking into account their thickness and transversal area. 
 As the addition of nano-SiO2 changes the ionic strength, the pH and the 
conductivity of the pore solution [26], the results obtained using the RCM test may be 
influenced, as the procedure of this test is based only on experience with OPC systems 
[27]. On the contrary, the natural diffusion test is only affected by the pore structure 
(permeability and tortuosity), chloride binding and the chloride concentration gradient. 
Thus, the chloride diffusion test may be more reliable for SCC with nano-SiO2 addition 
than the RCM test. Based on this, a chloride diffusion test was performed. For each 
prepared mix, three specimens (cylinders having a diameter of 100 mm and a height of 
50 mm) were extracted from different cubes. The diffusion test began 28 days after 
casting the cubes, following the procedure described in [28]. Prior to the test, all 



 
 

external faces of the specimens were coated with an epoxy resin except for one flat 
surface, left uncovered to allow the chlorides to penetrate the samples just from that 
side. Then, the specimens were immersed in a sodium chloride solution (concentration 
of 165 g/dm3) for 63 days, at room temperature, in a sealed and de-aired container, with 
the uncoated surface on top. After the exposure period, one specimen from each test 
series was split in order to measure the penetration depth of chlorides (using 0.1 M 
AgNO3 solution as a colorimetric chloride indicator). The remaining samples were dry-
ground in layers for determining the chloride concentration profiles. The grinding was 
performed on an area of 73 mm in diameter using the Profile Grinder 1100 (Germann 
Instruments). The obtained powder was collected for the determination of the total 
chloride concentration profiles, following the procedure described in [29]. An automatic 
potentiometric titration unit was used for the Cl- concentration measurements, applying 
a 0.01 M AgNO3 as titrant. The obtained chloride concentration profiles were fit to the 
solution of Fick’s 2nd law, in order to estimate the apparent chloride diffusion 
coefficient (Dapp) and the concentration of chloride near the surface. 
 As a further durability assessment, the freeze-thaw test was performed on SCC 
samples, even thought their air content in the fresh mix was less than the recommended 
value of 4% by volume [17]. The freeze-thaw resistance, expressed by the surface 
scaling factor (Sn), was determined following NEN-EN 12390-9 [30]. Nevertheless, the 
test samples differed from the specifications in the standard – for practical reasons 
cylinders were used instead of slabs. The 150 mm cubes were cured under water after 
demolding until the age of 14 days, when the cores (100 mm in diameter) were 
extracted and sliced (two cylinders of 50 mm in height were obtained from each core). 
Afterwards, the obtained cylinders were cured and sealed after 25 days with tight rubber 
sleeves. The sealed samples were placed in a polyurethane insulation of 10 mm 
thickness and surface-saturated with demineralized water for three days. Three 
specimens were tested for each mix, resulting in a total exposed surface area of 0.024 
m2. After saturating the samples, the demineralized water was replaced by a 3 mm layer 
of 3% by mass NaCl solution, poured on the top surface of the samples and the freeze-
thaw cycles were started. The applied temperature profile was following the 
recommendations given in NEN-EN 12390-9 [30]. The level of the solution on the 
surface of the concrete was adjusted regularly. In total, 56 freeze-thaw cycles were 
performed, during which the surface scaling was measured after 7, 14, 28, 42 and 56 
cycles. 
 The pore size distribution was measured using the mercury intrusion 
porosimetry (MIP) technique (Autopore IV, Micromeretics). The maximum applied 
pressure of the mercury was 228 MPa and the equilibrium time was 20 seconds. The 
pore size in the range of 900 – 0.005 μm was investigated. Pieces of hardened paste 
(approximately 2 grams), extracted from SCC samples were tested.   
 Finally, the microstructural morphology of the prepared concrete was analyzed 
using a high resolution scanning electron microscope (FEI Quanta 600 FEG-SEM) with 
a Schottky field emitter gun (at voltage of 10 keV and 0.6 mbar of low-vacuum 
pressure). Furthermore, a general chemical analysis was performed using EDAX energy 
dispersive spectroscopy (EDS). 
 
 
 



 
 

Results and discussion 
 
Fig. 2a shows the average values of the conductivity, measured on cylindrical SCC 
samples that were extracted from the cast cubes. It is clearly shown that the conductivity 
of the SCC with nano-SiO2 addition is reduced by more than 50% compared to the SCC 
reference mix. Meanwhile, the SCC with the colloidal nano-SiO2 presented a slightly 
lower conductivity than samples with the powder nano-SiO2. This behavior is an 
indication of the ability of the water-saturated pore structure of the concrete to transport 
electrical charge. Different authors [31,32] established that the conductivity is directly 
related to the porosity, pore structure (tortuosity, connectivity and conductivity) and to 
the pH of the pore solution (pH value is lower in presence of nano-SiO2). In general, 
higher porosity reflects on a higher conductivity due to the presence of a larger 
volumetric fraction of liquid-saturated pores. The lower conductivity values measured 
on the SCC with nano-SiO2 are caused by the pore structure refinement (less connected 
pores) due to the progressive pozzolanic reaction and a higher hydration degree (see the 
microstructural analysis section). The small difference between the two types of silica is 
mainly related to the higher reactivity of the colloidal nano-SiO2, which promotes a 
more compact and finer microstructure (higher stiffness C-S-H gel) than the powder 
nano-SiO2. Conductivity can also be related to the compressive strength as it was 
demonstrated by Andrade et al. [33]. 
 
 
 
 
 
 
 
 
 
 
Fig. 2 
28 and 91 days results of the tested SCC mixes, a) conductivity, b) chloride 
migration coefficient (DRCM) 

 
Fig. 2b presents the average values of the calculated chloride migration coefficients 
(DRCM) of each tested SCC. As the conductivity test results, the migration coefficients 
are much lower for the mixes containing nano-SiO2. In this context, the SCC mix with 
the colloidal nano-SiO2 shows the best performance. The explanation of this behavior is 
the same as previously discussed for the conductivity test results. A finer porosity, 
greater tortuosity and more precipitated C-S-H gel reduces the ingress speed of chloride 
into the concrete. The 28 days DRCM can be employed in service life design codes [34, 
35] for concrete elements and structures exposed to chlorides. When comparing all the 
obtained 28 days DRCM with the values suggested in CUR Durability Guideline [35] for 
100 years of service life (Table 3), the SCC reference mix is out of the range of the 
aimed exposure class XS3. On the contrary, both SCC mixes with nano-SiO2 addition 
satisfied the exposure class XS3 with a concrete cover depth of 50 mm. On the other 
hand, comparing the obtained DRCM values to similar SCC mixes published in literature, 
the values obtained for the reference mix are in line with SCC mixes containing high 
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Nano-SiO2 

Powder 
Nano-SiO2 

Ref. Colloidal 
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amount of limestone powder (between 8 and 12 × 10-12 m2/s at 28 days [2]), meanwhile 
the values obtained for the SCC mixes with nano-SiO2 addition are comparable to 
reported values of SCC composed of slag cement or fly ash with similar w/b ratio and 
cement content (between 4 and 5 × 10-12 m2/s [2]). 
 
Table 3 
Maximum values of 28-days DRCM coefficients for 100 years of service-life design of 
concrete, taken from [35]. 

Minimum 
concrete 

cover depth 
[mm] 

Maximum value of DRCM [× 10-12 m2/s] 

st
ee

l 

pr
e-

st
re

ss
ed

 
st

ee
l 

CEM I CEM I + CEM III 
25 - 50 % GGBS 

CEM III 
50 – 80 % GGBS 

CEM II B/V + CEM I 
20-30 % fly ash 

XD1, 
XD2, 

XD3, XS1 
XS2, XS3 

XD1, 
XD2, 

XD3, XS1 

XS2, 
XS3 

XD1, 
XD2, 

XD3, XS1 

XS2, 
XS3 

XD1, 
XD2, 
XD3, 
XS1 

XS2, XS3 

35 45 3.0 1.5 2.0 1.0 2.0 1.0 6.5 5.5 
40 50 5.5 2.0 4.0 1.5 4.0 1.5 12 10 
45 55 8.5 3.5 6.0 2.5 6.0 2.5 18 15 
50 60 12 5.0 9.0 3.5 8.5 3.6 26 22 
55 65 17 7.0 12 5.0 12 5.0 36 30 

60 70 22 9.0 16 6.5 15 6.5 47 39 

 
In Fig. 3a the obtained apparent chloride diffusion coefficients (Dapp) of the three SCC 
mixes are shown. A trend similar to the DRCM was obtained for the diffusion test. The 
largest Dapp was computed for the reference SCC (9.61 × 10-12 m2/s). The Dapp of 4.45 × 
10-12 m2/s and 3.55 × 10-12 m2/s were obtained for powder nano-SiO2 and colloidal 
nano-SiO2, respectively.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 3 
a) Chloride diffusion profiles of the tested SCC mixes, b) Cumulative scaling factor 
(Sn) after 56 freeze-thaw cycles (3% NaCl solution). 
 
The results of the freeze-thaw surface scaling test of the three selected SCC mixes are 
shown in Fig. 3b. The failure of the SCC reference mix, taking into account a maximum 
scaling of 1.5 kg/m2 at 28 cycles as recommended in [36], occurred about the 11th cycle. 
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In contrary, the SCC mixes with nano-SiO2 addition resulted in a surface scaling factor 
lower than the recommended value for non-air entrained concrete after 28 cycles. These 
SCC mixes failed the 1.5 kg/m2 criteria after 48 cycles. On the contrary to the other 
properties determined, the SCC with powder nano-SiO2 addition showed slightly better 
behavior than the SCC with colloidal nano-SiO2. The freeze-thaw resistance depends on 
the compressive strength, porosity, air content and other parameters such as the air-
bubbles distribution and pore size [37]. A better resistance to the freeze-thaw cycles of 
the SCC with nano-SiO2 addition can be attributed to its denser and more compacted 
microstructure. The highly stiff C-S-H gel and the refined pore structure results in a 
limited intrusion of water and in an improved resistance to changes of temperature near 
the surface of the concrete. Despite the better freeze-thaw resistance of the SCC with 
nano-SiO2 compared to the reference mix, its scaling values are larger than the 
recommended value of 0.5 kg/m2 after 56 cycles, suggested by Stark and Wicht [38] for 
concrete classified as having good resistance against freeze-thaw exposure. 
Nevertheless, with an air entrainment admixture that guaranties a minimum air content 
of 4%, the freeze-thaw resistance of SCC with nano-SiO2 should result in a mix having 
a high resistance to freeze-thaw. 

To support the previous findings, the hardened paste samples were analyzed 
using mercury intrusion porosimetry (MIP). The obtained results are shown in Table 4 
and Fig. 4. It is evident from the data an addition of 3.8% of nano-SiO2 slightly 
increased the volume of pores lower than 20 nm. Similar trends were obtained analyzing 
the overall parameters extracted from the mercury intrusion test. These parameters are 
shown in Table 3. It is clearly displayed in Table 3 that the addition of nano-SiO2 
decreased the median pore diameter (by volume and area) and the average pore 
diameter, which is reduced from 27.8 nm (for the reference) to 24.3 and 25.9 nm for the 
colloidal and powder nano-SiO2, respectively. Apparently, a reduction of 3.5 nm in the 
average pore diameter was enough to increase the properties of the SCC with nano-SiO2 
addition. Another interesting fact, also presented in Table 3, is that the apparent density 
of the hardened paste was higher for the SCC with nano-SiO2 (both types). This 
demonstrates that the addition of nano-SiO2 promotes the densification of the cement 
matrix. Despite the densification of the cement matrix, the porosity increases with the 
addition of nano-SiO2 (see Table 4). This means that other factors are improving the 
durability of the SCC with nano-SiO2. These factors can be e.g. changes of the shape of 
the pores (cylindrical vs. bottle-neck type), changes of the tortuosity or the connectivity 
and an improvement of the ITZ of cement paste/aggregates. Further research is needed 
to address this topic in the future. 
 
Table 4 
Properties of the hardened paste of SCC mixes obtained from MIP measurements 

Properties Reference Colloidal 
nano-SiO2  

Powder 
nano-SiO2  

Median pore diameter volume [nm] 34.8 30.9 33.8 
Median pore diameter area [nm] 20.3 17.2 17.5 
Average pore diameter (4V/A) [nm] 27.8 24.3 25.9 
Apparent density [g/ml] 2.41 2.44 2.45 
Porosity [%] 8.79 9.31 8.99 

 



 
 

All SCC mixes were analyzed in a low vacuum environment (0.6 mbar) using FEG-
SEM device. The objective of this analysis was to support the findings shown in the 
present research. In this context, Fig. 5 shows some morphological characteristics of the 
microstructure of the SCC reference mix. The SCC reference mix has a dense 
microstructure and a relatively good ITZ (Fig. 5a). Nevertheless, its microstructure is 
heterogeneous, with high amount of small pores and big sized C-S-H gel structures. 
Additionally, acicular (rod like) structures (Fig. 5b) were identified and possibly formed 
of Ettringite needles and other AFt phases that are reach in CO3

-2. The formation of the 
rod-like AFt phases in cement paste with high calcium carbonate concentration was 
reported in [39]. In addition, well crystallized hexagonal Portlandite (Ca(OH)2) plates 
were clearly precipitated in the cement matrix and in the largest air pores (Fig. 5c). 
Normally, the presence of high amounts of Ca(OH)2 results in a lower chloride intrusion 
resistance and lower compressive strength. These findings are in line with the 
mechanical and durability test results discussed previously. 

 
 

 
 
 
 
 
 
 
 
 
Fig. 4 
Mercury intrusion porosimetry results of hardened paste extracted from the tested 
SCC mixes, a) Cumulative intrusion vs. pore size curves, b) Log differential 
intrusion vs. pore size curves. 
 
 
 
 
 
 
 
 
 
 
Fig. 5 
FEG-SEM photomicrographs of SCC reference mix, a) cement matrix and 
aggregate ITZ, b) rod like calcium carboaluminate hydrate or Ettringite needle 
and c) precipitated hexagonal Portlandite plate crystals. 
 
As it can be observed in Fig. 6a, the SCC with colloidal nano-SiO2 addition shows a 
more homogeneous microstructure compared to the reference mix. This microstructure 
is characterized by compact and small sizes of C-S-H gel morphology. As a 
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consequence, a denser ITZ was also confirmed by SEM (Fig. 6b). It is important to 
notice that the rod or needle-type precipitates, or well precipitated Ca(OH)2 crystals 
were not found in the microstructural analysis. This confirms that the addition of the 
nano-SiO2 causes a refinement of the microstructure and induces precipitation of small 
and high stiffness sized C-S-H gel. In addition, the resistance to chloride intrusion was 
enhanced because of the densification of the microstructure and the high specific 
surface area of the gel [26]. The high reactivity of the colloidal nano-SiO2 was also 
confirmed by Fig. 6c, where small C-S-H gel precipitates were observed around the 
limestone powder and agglomerates of nano-particles.  
 
 
 
 
 
 
 
 
 
 
Fig. 6 
FEG-SEM photomicrographs of SCC colloidal nano-SiO2 mix, a) cement matrix, 
b) agglomerates in a pore and  c) aggregate dense ITZ. 
 
Also in the case of SCC with powder nano-SiO2, a similar microstructural analysis was 
performed. Its microstructure is also found to be refined (Fig. 7a), but not as much as 
with the colloidal nano-SiO2. Apparently, due to the fact that this nano-SiO2 was 
produced at high temperature (more compact, lower concentration of silanol groups) its 
pozzolanic reactivity is lower than the colloidal one. Nevertheless, a relatively 
homogeneous matrix was observed with more small distributed pores (Fig. 7b). Even 
though the microstructure was refined due to the addition of the powder silica, it was 
still possible to observe some remnant rod-like AFt phases in the matrix (Fig. 7c). 
 
 
 
 
 
 
 
 
 
 
Fig. 7 
FEG-SEM photomicrographs of SCC powder nano-SiO2 mix, a) cement matrix, b) 
aggregates ITZ and c) rod like precipitates. 
 
The differences observed in the microstructural analysis can explain the results that 
were obtained for the two SCC with both types of nano-SiO2 addition, where the SCC 
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containing colloidal nano-SiO2 presented better results in most of the performed tests. 
The SCC with colloidal nano-SiO2 showed a denser matrix and a better ITZ than the 
SCC with powder nano-SiO2. In addition, a refined microstructure was obtained (no 
Ettringite needles were found). This refinement causes better mechanical and durability 
properties of the tested SCC. 
 
4. Conclusions 
 
Based on the test results obtained from a reference SCC and mixes containing two types 
of nano-SiO2, the following conclusions can be drawn: 
 All durability indicators of the SCC studied (conductivity, chloride migration 
and diffusion coefficients, and freeze-thaw resistance) were significantly improved with 
the addition of 3.8% of both types of the nano-SiO2. Moreover, the SCC with colloidal 
nano-SiO2 showed slightly better properties than the SCC with powder nano-SiO2. 
 The microstructural analysis of the hardened SCC reveals that the addition of 
nano-SiO2 resulted in a homogeneous microstructure, characterized by compact and 
small sized C-S-H gel. As a consequence, a denser ITZ was produced. The addition of 
nano-SiO2 caused a refinement of the microstructure (less interconnected pore structure) 
and induced precipitation of small sized C-S-H gel having high stiffness. This was also 
confirmed by MIP measurements. In addition, the resistance against chloride intrusion 
was enhanced because of the densification of the microstructure. The high reactivity and 
faster pozzolanic behavior of the colloidal nano-SiO2 particles at early age produced a 
more refined microstructure than obtained for the SCC with powder nano-SiO2. 
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