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The viscosity of a concentrated suspension of rigid 
monosized particles  
 
The rheological behaviour of concentrated suspension is of great importance in a wide 
variety of applications, in biology, food and engineering. There is, therefore, practical as 
well as fundamental interest in understanding the relationship between the concentration, 
particle shape and particle-size distribution on the one hand, and relative viscosity of the 
suspension (or slurry) on the other.   

The concentration of concentrated slurries is highly sensitive to how this property 
is measured. Here the effective shear at zero-frequency is addressed. For dilute 
suspensions, the viscosity-concentration function can be linearized (e.g. the classical result 
of Einstein (1906, 1911). This linearized equation is based on no appreciable interaction 
between the particles, and the coefficient of which depends on particle shape only (and not 
on size distribution). As loading is increased, this universality is lost, and the viscosity 
diverges when the associated state of random close packing is approached, also depending 
on particle shape only. Numerous equations have been developed in efforts to extend the 
linear approximations to concentrated suspensions. These equations differ from each other, 
and none agrees well with data in the entire concentration range, from dilute to maximum 
concentration.  

Farris developed and validated a theory to explain the viscosity reduction that 
follows from mixing discretely sized particles with sufficiently large size ratios. The 
suspension can then be represented as a coarse fraction suspended in a fluid containing the 
finer particles, all fractions behaving independently of each other. Here also a suspension 
of bimodal particles with small size ratio, i.e. interacting particles, is studied. The model of 
Farris (1968) of these suspensions is recapitulated. Next, the random close packing of these 
bimodal particle packings are addressed. The unimodal-bimodal limit as explained by 
Brouwers (2006) is studied to relate packing increase (when size ratio increases) and the 
associated apparent particle concentration reduction (fluid fraction increase). Combining 
the concepts of Farris and Brouwers for small size ratio, a general equation in closed form 
is derived that provides the viscosity of a suspension of monosized particles at all 
concentrations, from the dilute limit to the random close packing limit. This equation is 
governed by the single-sized packing of the particle shape considered (φ1) and the dilute 
limit viscosity-concentration gradient (C1), for spheres, φ1 ≈ 0.64 and C1 = 2.5. This 
original expression for the viscosity is compared thoroughly with current models and with 
experiments in the full concentration range, and found to be in good accordance.  
 
Suspensions of unimodal particles 
 
The unimodal relative viscosity-concentration function is expressed as H(Φ), where H is 
the stiffening factor, the ratio of viscosity with particles divided by the viscosity of the 
pure fluid. H is a function of the particle volume concentration, Φ, and the particle shape. 
For dilute suspensions, the virial expansion of the relative viscosity to second order in Φ is: 
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Figure 1: Stiffening function H(Φ) as function of particle volume fraction Φ for monosized 

spheres as predicted by eqs. (2), (3) and (28) and as measured. 
 
For spheres, dominating viscous effects, and ignoring particle interactions, Einstein (1906, 
1911) computed the first-order virial coefficient C1 as 2.5. For non-spherical particles, C1 
is larger (Boek et al. (1997), Wierenga and Philipse (1998), Van der Kooij et al. (2001)). 
The value has for instance been computed and measured for ellipsoids and slender rods 
(Jeffery (1922), Onsager (1932), Kuhn and Kuhn (1945), Berry and Russel (1987)). The 
second-order coefficient has among others been determined by Huggins (1942), Batchelor 
(1977), Wagner and Woutersen (1994), Boek et al. (1997), Wierenga and Philipse (1998) 
and Van der Kooij et al. (2001). 
For more concentrated suspension, the most known phenomenological descriptions are the 
transcendental function by Vand (1948a) and Mooney (1951) 
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and the power-law function, attributed to Eilers (1941, 1943), Maron and Pierce (1956), 
Krieger-Dougherty (1959) and Quemada (1977), reading  
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Both equations tend to eq. (1) for Φ → 0, and diverge for Φ → φ1, i.e. the critical volume 
fraction. For low shear rates and without interparticle forces, this critical volume fraction is 
found experimentally to lie near the random close packing limit (Lee (1970), Marti et al. 



 
 

(2005)). This represents the limiting packing fraction above which flow is no longer 
possible. For spheres, the random close packed fraction, φ1, is about 0.64 (Scott (1960), 
Scott and Kilgour (1969)). Based on experiments with suspensions, Chong et al. (1971) 
and Van der Werff and De Kruif (1989) observed divergence for Φ tending to 0.61. In 
Figure 1, eqs. (2) and (3) are set out for C1 = 2.5 and φ1 = 0.64, which are the applicable 
values for hard spheres. For high shear rates some ordering is found, e.g. spherical 
particles tend to from crystalline clusters and the system seems capable to flow at volume 
fraction Φ > 0.64 (Van der Werff and De Kruif (1989)), but this does not hold for zero and 
moderate shear rates, as addressed here.   

 
Suspensions of bimodal particles with large size ratio 
 
Eveson et al. (1951) conjectured that a bimodal suspension can be regarded as a system in 
which the large particles are suspended in a continuous phase formed by the suspension of 
the smaller particles in the fluid. Eveson (1959) further explored this geometric concept 
and by carefully executed experiments it could be confirmed. Farris (1968) used this 
concept to develop a model based on purely geometric arguments for the viscosity of 
multimodal suspensions. It was postulated that when large particles are suspended in a 
suspension of smaller particles, these fractions behave independently. The resulting 
viscosity can then be expressed in the unique viscosity-concentration behaviour of the 
unimodal suspension. Also the particle size distribution that results in the lowest viscosity, 
at a given solid concentration, was derived. Farris (1968) verified experimentally this 
geometrical concept for spheres. Also for non-spherical particle this concept was 
successful: for rods and spheres with large size ratio (length more than ten times the sphere 
diameter), see Mor et al. (1996) and Marti et al. (2005). So, to describe the viscosity of 
multimodal mixes, the unimodal concentration function, H(Φ), is of key importance.  
 Following the concept of Farris (1968), when coarse particles are added to the 
suspension of fines, the fine particles behave as a fluid towards the coarse. In this case of 
noninteracting particles, the relative viscosity reads 
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in which ΦL is the volume fraction of large particles in the total suspension volume, and ΦS 
is the volume fraction of small particles in small particle plus fluid volume: 
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Note that this latter concentration is not equal to the volume fraction, defined as 
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Only for the largest fraction the concentration and volume fraction coincide, so ΦL = xL. 
The total solid volume fraction reads 
 
xT = xL + xS       ,                 (8) 
 
which is not equal to ΦL + ΦS. The total solid volume fraction in the suspension, xT, is 
related to the individual concentrations by 
 
1 – xT = (1 - ΦL)(1 - ΦS)   .                (9) 
 
Farris (1968) demonstrated that for particles with large size ratio (typically 10 or so), a 
minimum viscosity is obtained when  ΦL = ΦS = 1 – (1 – xT)1/2, and hence μ = H(ΦL)2.   
The volume fractions of large and small particles in the solid mixture follow as 
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Suspensions of bimodal particles with small size ratio 
 
Farris model 
The geometric model of Farris is known for large size ratios, which validity has been 
extensively confirmed. What apparently has not been noticed over the years, or at least not 
has not been remarked upon, is that Farris (1968) also extended the model to finite and 
small size ratios. From theory and experiments it was concluded that for interfering particle 
sizes, eq. (4) is still applicable but a part f of the smaller fraction should be assigned to the 
larger fraction, and the remaining part, 1- f, to the small fraction, hence: 
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whereby f, the so-called crowding factor, depends on the particle size ratio. For u = 1 
(monosized particles), f = 1 and in such case μ becomes H(Φ) as ΦS becomes 0 and ΦL 
becomes Φ. That is to say, for u ↓ 1, the total particle volume fraction xT of the unimodal 
particle suspension reads 
 
xT = xL + xS = Φ < φ1    .               (13) 
 
On the other hand, f = 0 for u-1 = 0, i.e. non-interacting sizes as discussed in the previous 
Section. In the latter case, obviously eqs. (5) and (6) are obtained. For constant xS and 



 
 

varying xL, Furnas (1968) provided f as a function of u-1. Obviously, for u ↓ 1, xL < φ1 – xS 
as Φ < φ1. In the vicinity of u-1 = 1, f can be approximated 
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inserting eq. (14) into eqs. (11) and (12) yields the following expressions 
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see eqs. (7) and (8). Inserting eqs. (15) and (16) into the stiffening functions appearing in 
eq. (4), their Taylor series expansion for u – 1 → 0 yields the following expressions for 
them: 
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whereby eq. (1) has been used in eq. (18), i.e. the first-order expansion of H(Φ) in the 
dilute limit. Substituting eqs. (17) and (18) in the bimodal stiffening function, eq. (4), 
yields a first-order expression  
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This equation, based on the concept of Farris (1968), expresses the relative viscosity of a 
monosized suspension a with total concentration Φ that becomes bimodal. The last terms 
on the right-hand side eq. (19) govern the stiffening reduction upon the transition of 
unimodal particles to bimodal particles (u > 1) in the suspension.  
 
Excess fluid model 
Robinson (1949) presented a modification of the Einstein equation by considering the “free 
fluid”, i.e. the fluid outside of the suspended particles. In this model the packing fraction of 
the suspended particles is relevant. Here this concept is applied to monosized particles and 
the case these particles become bimodal, that is to say, the packing increases and excess 
fluid is generated. By Brouwers (2006, 2007, 2008) it was demonstrated that for u – 1 
approaching zero, the bimodal packing fraction can described by 
 
φT(u → 1, cL) = 1)(uc)c(14β LS111 −ϕ−ϕ+ϕ    .            (20) 



 
 

 
Both φ1 and β depend on the particle shape and the mode of packing (e.g. dense, loose) 
only, for random close packing (RCP) of spheres, φ1 = 0.64 and β = 0.20 (Brouwers 
(2007)). The parameter β follows from the gradient in packing fraction when a unimodal 
packing (u = 1) turns into a bimodal packing (u > 1). It follows that along (u = 1, 0 ≤ cL ≤ 
1), the packing fraction retains it monosized value; physically this implies that particles are 
replaced by particles of identical size, i.e., maintaining a single-sized mixture, and xL + xS 
= φ1. Also along (u ≥ 1, cL = 0) and (u ≥ 1, cL = 1), the packing fraction remains φ1, as this 
corresponds to the packing of unimodal small and large particles, respectively. 
 

Vf –VT(1 – φ1)/φ1 VT VT(1 – φ1)/φ1

VT + Vf

Vrcp = VT/φ1

Vf –VT(1 – φ1)/φ1 VT VT(1 – φ1)/φ1

VT + Vf

Vrcp = VT/φ1

 
 

Figure 2: Schematic representation of a suspension of unimodal particles with total volume 
VT and a fluid volume Vf, whereby the particles are arranged in a random close packing 
(packing fraction φ1). The volumes of packed bed Vrcp and of the free (excess) fluid are 

indicated. 
 
From eq. (20) one can see that when a monosized packing becomes bimodal, the packing 
fraction increases, likewise when particles of large size ratio are combined (previous 
section). Mangelsdorf and Washington (1960) already expressed the increased packing 
fraction, by combining to particles sizes with small size, in terms of reduced void fraction 
of the packed bed and created excess volume. Hence, less fluid is needed to fill the voids 
and excess fluid is created when the size ratio is not unity. This means that a packed bed of 
monosized particles, i.e. Φ = φ1, becomes a suspension when u > 1. In Figure 2, this case 
corresponds to Vf – Vrcp(1 – φ1) = 0 and Vrcp = VT/φ1: fluid volume Vf in the mixture is just 
sufficient to fill the voids of the close packed particles which have volume VT.  
 When u > 1, the packed bed contracts, and the excess fluid becomes available to 
suspend the particles. This created excess fluid amounts 
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see eq. (20). The particle volume fraction then reads 
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as VT/( Vf + VT) = Φ = φ1. For a suspension, so when Vf > V1(1 – φ1)/φ1 and hence Φ < φ1, 
see Figure 2, the reduction in particle volume fraction by letting u > 1, follows from 
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as VT/( Vf + VT) = Φ. In other words, eq. (22) is the special case of eq. (23) when Φ = φ1, 
so a monosized random close packing as starting situation. Now, the bimodal stiffening 
function can expanded for u ≈ 1: 
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In the previous subsection equivalent eq. (19) was derived, based on the model of Farris 
for u → 1. Both models and resulting equations will be combined in the next subsection.  
 
Stiffening function H(Φ) 
 
The bimodal relative viscosity is governed by both the Farris concept (eq. (19)) and by the 
excess fluid volume consideration (eq. (24)). Equating both equations, ignoring (u – 1)2 
and higher terms, and substituting xS/Φ and xL/Φ for cS and cL, respectively, yields 
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and it can be seen that both u – 1 and xS have cancelled out from the first-order terms. This 
implies that by combining both expansions (eqs. (19) and (24)), the actual bimodal 
character of the particle mix, governed by size ratio u and composition xS (or xL) is 
irrelevant.  
In the limit of u → 1 and Φ tending to φ1 (and hence xL → φ1 – xS), both dH/dΦ and H(Φ) 
tend to infinity, but dH/dΦ dominates H and H(Φ)/(dH/dΦ) tends to zero, i.e. the second 
term on the left-hand side of eq. (24) can be ignored. This feature of the stiffening function 
H(Φ) is confirmed by eqs. (2) and (3), and will here be verified a posteriori too. This 
insight implies that  
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In case xS = 0 and hence xL = Φ, ω = 4β(1 – φ1), and combining eqs. (25) and (26) now 
yield as governing differential equation of the mono-sized system in the entire 
concentration range 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ

Φ−
−

Φ

)(H
1

C
Φd

dH 1  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ
Φ

ΦdΦ
dH

1

    .             (27) 

 
Separation of the variables H and Φ, integration and application of H(Φ = 0) = 1 yields 
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This equation is an analytical expression for the unimodal stiffening function, and is 
derived employing theoretical considerations only. It contains two parameters, the first-
order virial coefficient C1 of the considered particle shape (C1 = 2.5 for spheres, the 
Einstein result), and the random close packing fraction φ1 of the considered particle (φ1 ≈ 
0.64 for spheres). Hydrodynamic effects are accounted for by C1 only, governing the single 
particle hydrodynamics, and the remaining part of the model is governed by geometric 
considerations. The stiffening function diverges when the particle concentration Φ 
approaches φ1.  
The derivation presumed that H(Φ)/(dH/dΦ) → 0 for Φ → φ1. From eq. (28) it readily 
follows that this condition is met. It also follows that in the entire concentration range 0 ≤ 
Φ < φ1, dH/dΦ > C1H(Φ)/(1 – Φ), so that the last two terms on the right-hand side of eq. 
(19) imply a viscosity reduction indeed. 
 
Comparison with experimental data 
 
For one case, xS = 0.25, Farris (1968) presented stiffening functions versus xT for various 
u-1 (“Figure 4“), and values of the stiffening factor f against the inverse size ratio u-1 
ranging from zero to unity follow. In Table I these values of f versus u-1 are summarized, 
and they are set out in Figure 3. From this data, ω = 0.18 can be derived (eq. (14)). 
Substituting φ1 = 0.61-0.64, β = 0.20 and φS = 0.25, the right-hand side of eq. (26) also 
yields 0.18 (actually 0.176-0.184). This comparison indicates that Farris’ concept for 
interacting sizes is valid up to the situation of random close packing, and that ω is related 
to φ1, β and xL indeed, see eq. (26).  
Next, the obtained stiffening function is compared with experimental data unimodal 
suspensions, from dilute to concentrated (close to divergence). In Figure 1 measured 
relative viscosity values are set out, taken from Vand (1948b), Lewis and Nielsen (1968) 
and Rodriguez et al. (1992).  
Vand (1948b) and Lewis and Nielsen (1968) used glass spheres of a very narrow 
distribution for their viscosity measurements. Rodriguez et al. (1992) used monodisperse 
samples of crosslinked polystyrene microgels dispersed in bromoform, and determined the 



 
 

zero-shear viscosity. These suspensions were found to take the same φ1 as in macroscopic 
random close packings (e.g. of glass spheres). From Figure 1 it follows that all three sets of 
measured relative viscosities closely agree with each other in the entire concentration 
range.  
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Figure 3 Values of crowding factor f versus inverse size ratio u-1, taken from Table I. Lines 

are drawn to guide the eye. 
 

u-1 f 
1 1 

0.477 0.9 
0.313 0.75 
0.318 0.4 

0 0 
 

Table I Crowding factor f versus inverse size ratio u-1 as extracted from “Figure 4” from 
Farris (1968). 

 
For high sphere loads, Φ > 0.4, eqs. (2) and (3) overestimate and underestimate, 
respectively, the measured values. Eq. (2) could be better fit to the data by augmenting φ1, 
but this also implies that divergence will take place at a packing fraction higher than 
pertaining to random close packing. In Figure 1, also eq. (28) is set out from Φ = 0 to Φ 
approaching φ1, with φ1 = 0.64. One can see that in the full concentration range, eq. (28) 
and experiments are lying close together. In Table II the computed values are included, as 
well those computed with eq. (28) using φ1 = 0.61. For the glass sphere experiments and 
moderate Φ sphere loads, one can see that eq. (28) with φ1 = 0.61 yields better agreement. 
This limiting value of Φ was observed by Chong et al. (1971) and Van der Werff and De 
Kruif (1989).   
 
Summary 
 
In the present paper the relative viscosity of concentrated suspensions of monosized and 
multimodal rigid particles, consisting of equally shaped particles, at zero shear rate is 



 
 

addressed. In the dilute limit, the hydrodynamics of the individual particle prevails, 
governed by the first-order coefficient C1 (eq. (1)), which takes the well-known Einstein 
value of 2.5 for spheres. When particle interactions cannot be ignored anymore, it is known 
that for particles with large size ratios, the viscosity increase can be described by 
considering geometric considerations only.   
To obtain an exact equation for the monosized particle viscosity-concentration relation, i.e. 
the stiffening function; H(Φ), two approaches are followed. Basically, both are related to 
packing considerations of bimodal suspensions and packings of discretely sized particles 
with small size ratio u.  
Using the random close packing fraction of such bimodal packings, which contract upon 
combining two sizes, a differential equation for the apparent fluid increase (eq. (23)) and 
associated viscosity reduction is derived (eq. (24)). It turns out that the viscosity of these 
discrete bimodal particle suspensions is governed by the size ratio u, the gradient of the 
stiffening function for the concentration considered (C1 for a dilute system), φ1 and β. The 
latter two parameters follow from the random close packing of the considered particle 
shape, φ1 is the monosized packing fraction and β the packing fraction gradient when a 
unimodal packing turns into a bimodal packing. By Brouwers (2006) the parameter β has 
been derived and values listed, and here it turns out that the bimodal random close packing 
and related parameter β can be employed to quantify viscosity reduction. 
The second line of reasoning follows the observation by Farris (1968) concerning the 
viscosity reduction by combining particles of different size ratios, so not large size ratios 
only. Farris also considered the case of interacting sizes and found that all bimodal 
suspensions can be described using the same geometric concept, whereby a crowding 
factor f (the part of the finer fraction that behaves as large fraction) depends on size ratio u 
only. Here, this concept is employed to derive a second differential equation (eq. (19)) that 
describes the viscosity of a monosized suspension at the onset of turning into a bimodal 
suspension. This expression contains the gradient of f versus u at u = 1, viz. ω, governing 
the gradient when a unimodal suspension becomes a bimodal suspension. 
Both approaches yield two differential equations for the bimodal suspension viscosity for 
small u – 1, by combining both governing equations it follows that ω can be expressed in 
φ1 and β (eq. (26)). Using data provided by Farris (1968), close agreement with this 
theoretical expression for ω is obtained. 
Finally, using both equations that govern the monosized relative viscosity (stiffening 
function) at the onset of bimodal suspensions, using the relation between ω on the one 
hand and φ1 and β one the other, a governing differential equation (eq. (27)) for the 
stiffening function H(Φ) is derived, and solved in closed-form (eq. (28)). The resulting 
analytical expression is solely governed by C1 and φ1. The resulting stiffening function 
predictions are found to be in good quantitative agreement with the classical experiments 
by Vand (1948b), Lewis and Nielsen (1968) and Rodriguez et al. (1992). 
 
Literature 
 
Berry, D.H. and W.B. Russel (1987), The rheology of dilute suspensions of slender rods in 
weak flows, J. Fluid Mech., vol. 180, pp. 475-494. 



 
 

Boek, E.S., Coveney, P.V., Lekkerkerker, H.N.W. and P. van der Schoot (1997), 
Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics, 
Phys. Rev. E, vol. 55, pp. 3124-3133.  
Brouwers, H.J.H. (2006), Particle-size distribution and packing fraction of geometric 
packings, Phys. Rev. E., vol. 74, pp. 031309-1-0313309-14, ibid 069901 (E). 
Brouwers, H.J.H. (2007), Packing of crystalline structures of binary hard spheres: an 
analytical approach and application to amorphisation, Physical Review E, vol. 76, pp. 
041304-1-041304-16. 
Brouwers, H.J.H. (2008), Packing of crystalline structures of binary hard spheres: a general 
equation and application to amorphisation, Physical Review E, vol. 78, pp. 011303-1-
011303-7. 
Chong, J.S., Christiansen, E.B. and A.D. Baer (1971), Rheology of concentrated 
suspensions, J. Appl. Polymer Sci., vol. 15, pp. 2007-2021. 
Eilers, H. (1941), Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der 
Konzentration, Kolloid-Zeitschrift, vol. 97, pp. 313-321 (in German). 
Eilers, H. (1943), Die Viskositäts-Konzentrationsabhängigkeit kolloider Systeme in 
organischen Lösungsmitteln, Kolloid-Zeitschrift, vol. 102, pp. 154-169 (in German). 
Einstein, A. (1906), Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., vol. 19, 
pp. 289-306 (in German).  
Einstein, A. (1911), Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der 
Moleküldimensionen“, Ann. Phys., vol. 34, pp. 591-592 (in German).  
Eveson, G.F., Ward, S.G. and R.L. Whitmore (1951), Anomalous viscosity in model 
suspensions, Discussions Faraday Soc., vol. 11, pp. 11-14. 
Eveson, G.F. (1959), The viscosity of stable suspensions of spheres at low rates of shear, 
in Rheology of Disperse Systems, pp. 61-83, Ed. C.C. Mill, Pergamon, London. 
Farris, R.J. (1968), Prediction of the viscosity of multimodal suspensions from unimodal 
viscosity data, Trans. Soc. Rheol., vol. 12, 281-301. 
Jeffery, G.B. (1922), The motion of ellipsoidal particles immersed in a viscous fluid, Proc. 
Roy. Soc. London, Series A, vol. 102, pp. 161-179. 
Krieger, I.M. and T.J. Dougherty (1959), A mechanism for non-Newtonian flow in 
suspension of rigid spheres, Trans. Soc. Rheol., vol. 3, pp. 137-152. 
Kuhn, W. and H. Kuhn (1945), Die Abhängigkeit der Viskosität vom Strömungsgefälle bei 
hochverdünnten Suspensionen uns Lösungen, Helv. Chimica Acta, vol. 28, pp. 7-127 (in 
German). 
Lee, D.I. (1970), Packing of spheres and its effect on the viscosity of suspensions, J. Paint 
Technology, vol. 42, pp. 579-587. 
Lewis, T.B. and L.E. Nielsen (1968), Viscosity of dispersed and aggregated suspensions of 
spheres, Trans. Soc. Rheol., vol. 12, pp. 421-443. 
Mangelsdorf P.C. and E.L. Washington (1960), Packing of mixtures of hard spheres, 
Nature, Lond., vol. 187, pp. 930.   
Maron, S.H. and P.E. Pierce (1956), Application of Ree-Eyring generalized flow theory to 
suspensions of spherical particles, J. Colloid Sci., vol. 11, pp. 80-95.  
Marti, I., Höfler, O., Fischer, P. and E.J. Windhab (2005), Rheology of concentrated 
suspensions containing mixtures of spheres and fibres, Rheol. Acta, vol. 44, pp. 502-512. 
Mor, R., Gottlieb, M., Graham, A. and L. Mondy (1996), Viscosity of concentrated 
suspensions, of sphere/rod mixtures, Chem. Eng. Comm., vols. 148-150, pp. 421-430. 



 
 

Mooney, M. (1951), The viscosity of a concentrated suspension of spherical particles, J. 
Colloid Sci., vol. 6, pp. 162-170.  
Onsager, L. (1932), Viscosity and particle shape in colloid solutions, Phys. Rev., vol. 40, 
p. 1028, in Proc. Am. Phys. Soc., Minutes of the Washington Meeting, pp. 1024-1057.      
Quemada, D. (1977), Rheology of concentrated disperse systems and minimum energy 
dissipation principle, Rheol. Acta, vol. 16, pp. 82-94. 
Robinson, J.V. (1949), The viscosity of suspensions of spheres, J. Phys. Chem., vol. 53, 
pp. 1042-1056. 
Rodriguez, B.E., Kaler, E.W. and M.S. Wolfe (1992), Binary mixtures of monodisperse 
latex dispersions 2. Viscosity, Langmuir, vol. 8, pp. 2382-2389.  
Scott, G.D. (1960), Packing of equal spheres, Nature, vol. 188, pp. 908-909.  
Scott, G.D. and D.M. Kilgour (1969), The density of random close packing of spheres, 
Brit. J. Appl. Phys. (J. Phys. D), vol. 2, pp. 863-866. 
Vand, V. (1948a), Viscosity of solutions and suspensions. I Theory, J. Phys. Colloid 
Chem., vol. 52, pp. 277-299. 
Vand, V. (1948b), Viscosity of solutions and suspensions. II Experimental determination 
of the viscosity-concentration function of spherical suspensions, J. Phys. Colloid Chem., 
vol. 52, pp. 300-314. 
Van der Kooij, F.M., Boek, E.S. and A.P. Philipse (2001), Rheology of dilute suspensions 
of hard platelike colloids, J. Colloid and Interface Sci., vol. 235, pp. 344-349. 
Van der Werff, J.C. and C.G. de Kruif (1989), Hard-sphere colloidal dispersions: the 
scaling of rheological properties with particle size, volume fraction, and share rate, J. 
Rheol., vol. 33, pp. 421-454.  
Wagner, N.J. and A.T.J.M. Woutersen (1994), The viscosity of bimodal and polydisperse 
suspensions of hard spheres in the dilute limit, J. Fluid Mech., vol. 278, pp. 267-287. 
Wierenga, A.M and A.P. Philipse (1998), Low-shear viscosity of isotropic dispersion of 
(Brownian) rods and fibres; a review of theory and experiments, Colloids and Surfaces A. 
Physicochemical and Engineering Aspects, vol. 137, pp. 355-372.  
 
Author 
 
Prof. dr. ir. H.J.H. Brouwers 
Eindhoven University of Technology    
Department of Architecture, Building and Planning      
P.O. Box 513 
 
NL ─ 5600 MB Eindhoven  


